量子縮退気体のための位相空間法<br>Phase Space Methods for Degenerate Quantum Gases (International Series of Monographs on Physics)

個数:

量子縮退気体のための位相空間法
Phase Space Methods for Degenerate Quantum Gases (International Series of Monographs on Physics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 432 p.
  • 言語 ENG
  • 商品コード 9780199562749
  • DDC分類 535.15

Full Description

Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons.

The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable quantities such as quantum correlation functions are given as phase space integrals. Finally, the phase space variables are replaced by time dependent stochastic variables satisfying Langevin stochastic equations obtained from the Fokker-Planck equation, with stochastic averages giving the measurable quantities.

Second, a quantum field approach is treated, the density operator being represented by a distribution functional of field functions which replace field annihilation, creation operators, the distribution functional satisfying a functional FPE, etc. A novel feature of this book is that the phase space variables for fermions are Grassmann variables, not c-numbers. However, we show that Grassmann distribution functions and functionals still provide equations for obtaining both analytic and numerical solutions. The book includes the necessary mathematics for Grassmann calculus and functional calculus, and detailed derivations of key results are provided.

Contents

1. Introduction ; 2. States and Operators ; 3. Complex Numbers and Grassmann Numbers ; 4. Grassmann Calculus ; 5. Coherent States ; 6. Canonical Transformations ; 7. Phase Space Distributions ; 8. Fokker-Planck Equations ; 9. Langevin Equations ; 10. Application to Few Mode Systems ; 11. Functional Calculus for C-Number and Grassmann Fields ; 12. Distribution Functionals in Quantum-Atom Optics ; 13. Functional Fokker-Planck Equations ; 14. Langevin Field Equations ; 15. Application to Multi-Mode Systems ; 16. Further Developments ; Appendix A: Fermion Anti-Commutation Rules ; Appendix B: Markovian Master Equation ; Appendix C: Grassmann Calculus ; Appendix D: Properties of Coherent States ; Appendix E: Phase Space Distributions for Bosons and Fermions ; Appendix F: Fokker-Planck Equations ; Appendix G: Langevin Equations ; Appendix H: Functional Calculus for Restricted Boson and Fermion Fields ; Appendix I: Applications to Multi-Mode Systems

最近チェックした商品