The Oxford Handbook of Quantitative Methods in Psychology, Volume 2 (Oxford Library of Psychology)

個数:

The Oxford Handbook of Quantitative Methods in Psychology, Volume 2 (Oxford Library of Psychology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 784 p.
  • 言語 ENG
  • 商品コード 9780199370160
  • DDC分類 150.72

Full Description

Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods in Psychology is the complete tool box to deliver the most valid and generalizable answers to today's complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences.

Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.

Contents

1. Introduction ; Todd Little ; 2. Overview of Traditional/Classical Statistical Approaches ; Bruce Thompson ; 3. Generalized Linear Models ; Stefany Coxe, Stephen G. West, and Leona S. Aiken ; 4. Categorical Methods ; Carol M. Woods ; 5. Configural Frequency Analysis ; Alexander von Eye, Eun-Young Mun, Patrick Mair, and Stefan von Weber ; 6. Nonparametric Statistical Techniques ; Trent D. Buskirk, Lisa M. Willoughby, and Terry T. Tomazic ; 7. Correspondence Analysis ; Michael J. Greenacre ; 8. Spatial Analysis ; Luc Anselin, Alan T. Murray, and Sergio J. Rey ; 9. Analysis of Imaging Data ; Larry R. Price ; 10. Quantitative Analysis of Genes ; Sarah E. Medland ; 11. Twin Studies and Behavior Genetics ; Gabriella A.M. Blokland, Miriam A. Mosing, Karin J.H. Verweij, and Sarah E. Medland ; 12. Multidimensional Scaling ; Cody S. Ding ; 13. Latent Variable Measurement Models ; Timothy A. Brown ; 14. Multilevel Regression and Multilevel Structural Equation Modeling ; Joop J. Hox ; 15. Structural Equation Models ; John J. McArdle and Kelly M. Kadlec ; 16. Developments in Mediation Analysis ; David P. MacKinnon, Yasemin Kisbu-Sakarya, and Amanda C. Gottschall ; 17. Moderation ; Herbert W. Marsh, Kit-Tai Hau, Zhonglin Wen, Benjamin Nagengast, and Alexandre J.S. Morin ; 18. Longitudinal Data Analysis ; Wei Wu, James P. Selig, and Todd D. Little ; 19. Dynamical Systems and Models of Continuous Time ; Deboeck, P. R. ; 20. Intensive Longitudinal Data ; Theodore A. Walls ; 21. Dynamic Factor Analysis: Modeling Person-specific Process ; Nilam Ram, Annette Brose, and Peter C. M. Molenaar ; 22. Time Series Analysis ; William W.S. Wei ; 23. Analyzing Event History Data ; Trond Peterson ; 24. Clustering and Classification ; Andre A. Rupp ; 25. Latent Class Analysis and Finite Mixture Modeling ; Katherine E. Masyn ; 26. Taxometrics ; Theodore P. Beauchaine ; 27. Missing Data Methods ; Amanda N. Baraldi and Craig K. Enders ; 28. Secondary Data Analysis ; M. Brent Donnellan and Richard E. Lucas ; 29. Data Mining ; Carolin Strobl ; 30. Meta-analysis and Quantitative Research Synthesis ; Noel A. Card and Deborah M. Casper ; 31. Common Fallacies in Quantitative Research Methodology ; Lihshing Leigh Wang, Amber S. Watts, Rawni A. Anderson, and Todd D. Little

最近チェックした商品