Positive Topology : A New Practice in Constructive Mathematics (Oxford Logic Guides)

個数:

Positive Topology : A New Practice in Constructive Mathematics (Oxford Logic Guides)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 656 p.
  • 言語 ENG
  • 商品コード 9780199232888
  • DDC分類 511.3

Full Description

Aimed at researchers in mathematics, philosophy and logic, this book provides the first organic exposition of dynamic constructivism and the mathematics ensuing in practice, including discussion of the technical development of the field and outlining the philosophical and methodological motivations underlying the evolution of the discipline.

In dynamic constructivism, mathematics is seen as the result of a dynamic process of interaction between the construction of mathematical entities, by abstraction and by idealization, and their selection according to their efficiency in applications to reality and in the organisation of mathematics itself.

The crucial benefit of this vision is its independence from dogmas and external authorities. A practical consequence is full respect for the diverse areas of mathematics - mainly computation, spatial intuition, deduction, and abstract axiomatic method - without reducing one to another. As a second consequence, a dynamic interaction between different 'epistemological levels' is always active and present, in the development of mathematics in practice, the study of its foundations and its formalisation in a computer language.

Contents

Preface
About This Book
1: Dynamic Constructivism: A New Conception of Mathematics
2: The Minimalist Foundation: Basic Notions and Tools
3: Basic Pairs: Symmetry and Duality in Topology
4: Relation-Pairs: Continuity is a Commutative Square
5: Concrete Spaces: Benefits of Keeping a Base
6: Convergent Relation-Pairs: Towards Topology With Points
7: Basic Topologies: Pointfree Topology Without Convergence
8: Continuous Relations: Respecting Covers and Positivities
9: Positive Topologies and Formal Maps: Pointfree Topology
10: Ideal Spaces and Maps: Ideal Aspects Over Real Topology
11: Topological Systems: a Place for all Topological Notions
12: Overlap Algebras: the Power of a Set as an Algebra
13: Overlap Topologies: Putting Topology in Algebraic Terms
Appendix A: Generating Positivity By Co-induction
References
Index

最近チェックした商品