Data-Driven Modeling & Scientific Computation : Methods for Complex Systems & Big Data

個数:
  • 予約

Data-Driven Modeling & Scientific Computation : Methods for Complex Systems & Big Data

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 576 p.
  • 言語 ENG
  • 商品コード 9780198929093
  • DDC分類 004.33

Full Description

Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data is an accessible introductory-to-advanced textbook focusing on integrating scientific computing methods and algorithms with modern data analysis techniques, including basic applications of machine learning in the sciences and engineering. Its overarching goal is to develop techniques that allow for the integration of the dynamics of complex systems and big data.

This comprehensive textbook provides a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation, data-driven modelling, and machine learning. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological, and physical sciences.

The high-level programming language python is used throughout the book to implement and develop mathematical solution strategies. One specific aim of the book is to integrate standard scientific computing methods with the burgeoning field of data analysis, machine learning and Artificial Intelligence (AI). This area of research is expanding at an incredible pace in the sciences due to the proliferation of data collection in almost every field of science.

The enormous data sets routinely encountered in the sciences now certainly give a big incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret, and give meaning to the data in the context of its scientific setting. This brings together, in a self-consistent fashion, the key ideas from (i) statistics, (ii) time-frequency analysis and (iii) low-dimensional reductions in order to provide meaningful insight into the data sets one is faced with in any scientific field today, including those generated from complex dynamic systems. This is a tremendously exciting area and much of this part of the book is driven by intuitive examples of how the three areas (i)-(iii) can be used in combination to give critical insight into the fundamental workings of various problems.

最近チェックした商品