Measurement Error in Longitudinal Data

個数:

Measurement Error in Longitudinal Data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 464 p.
  • 言語 ENG
  • 商品コード 9780198859987
  • DDC分類 519.53

Full Description

Longitudinal data is essential for understanding how the world around us changes. Most theories in the social sciences and elsewhere have a focus on change, be it of individuals, of countries, of organizations, or of systems, and this is reflected in the myriad of longitudinal data that are being collected using large panel surveys. This type of data collection has been made easier in the age of Big Data and with the rise of social media. Yet our measurements of the world are often imperfect, and longitudinal data is vulnerable to measurement errors which can lead to flawed and misleading conclusions.

Measurement Error in Longitudinal Data tackles the important issue of how to investigate change in the context of imperfect data. It compiles the latest advances in estimating change in the presence of measurement error from several fields and covers the entire process, from the best ways of collecting longitudinal data, to statistical models to estimate change under uncertainty, to examples of researchers applying these methods in the real world.

This book introduces the essential issues of longitudinal data collection, such as memory effects, panel conditioning (or mere measurement effects), the use of administrative data, and the collection of multi-mode longitudinal data. It also presents some of the most important models used in this area, including quasi-simplex models, latent growth models, latent Markov chains, and equivalence/DIF testing. Finally, the use of vignettes in the context of longitudinal data and estimation methods for multilevel models of change in the presence of measurement error are also discussed.

Contents

1: Memory Effects as a Source of Bias in Repeated Survey Measurement
2: A Methodological Framework for the Analysis of Panel Conditioning Effects
3: A longitudinal error framework to support the design and use of integrated datasets
4: Modeling Mode Effects for a Panel Survey in Transition
5: Estimating Mode Effects in Panel Surveys: A Multitrait Multimethod Approach
6: Developing Reliable Measures: An Approach to Evaluating the Quality of Survey Measurement Using Longitudinal Designs
7: Assessing and relaxing assumptions in quasi-simplex models
8: Modelling error dependence in categorical longitudinal data
9: Reliability in Latent Growth Curve Models
10: Longitudinal Measurement (Non)Invariance in Latent Constructs: Conceptual Insights, Model Specifications and Testing Strategies
11: Measurement invariance with ordered categorical variables: applications in longitudinal survey research
12: Self-evaluation, Differential Item Functioning and Longitudinal Anchoring Vignettes
13: The Implications of Functional Form Choice on Model Misspecification in Longitudinal Survey Mode Adjustments
14: Disappearing errors in a conversion model
15: On Total Least Squares Estimation for Longitudinal Errors-in-Variables Models
16: Comparison of Reliability in Seventeen European Countries Using the Quasi-Simplex Model
17: Establishing measurement invariance across time within an accelerated longitudinal design

最近チェックした商品