解析要素法<br>Analytic Element Method : Complex Interactions of Boundaries and Interfaces

個数:

解析要素法
Analytic Element Method : Complex Interactions of Boundaries and Interfaces

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 338 p.
  • 言語 ENG
  • 商品コード 9780198856788
  • DDC分類 515

Full Description

"Analytic Element Method" (AEM) assembles a broad range of mathematical and computational approaches to solve important problems in engineering and science. As the subtitle "Complex Interactions of Boundaries and Interfaces" suggests, problems are partitioned into sets of elements and methods are formulated to solve conditions along their boundaries and interfaces. Presentation will place an element within its landscape, formulate its interactions with other elements using linear series of influence functions, and then solve for its coefficients to match its boundary and interface conditions. Computational methods enable boundary and interface conditions of closely interacting elements to be matched with nearly exact precision, commonly to within 8-12 significant digits. Comprehensive solutions provide elements that collectively interact and shape the environment within which they exist.

This work is grounded in a wide range of foundational studies, using exact solutions for important boundary value problems. However, the computational capacity of their times limited solutions to idealized problems, commonly involving a single isolated element within a uniform regional background. With the advent of modern computers, such mathematically based methods were passed over by many, in the pursuit of discretized domain solutions using finite element and finite difference methods. Yet, the elegance of the mathematical foundational studies remains, and the rationale for the Analytic Element Method was inspired by the realization that computational advances could also lead to advances in the mathematical methods that were unforeseeable in the past.

Contents

Analytic Element Method across Fields of Study
1: Philosophical Perspective
2: Studies of Flow and Conduction
3: Studies of Periodic Waves
4: Studies of Deformation by Forces
Further Reading
Foundation of the Analytic Element Method
5: The Analytical Element Method Paradigm
6: Solving Systems of Equations to Match Boundary Conditions
7: Consistent Notation for Boundary Value Problems
Further Reading
Analytic Elements from Complex Functions
8: Point Elements in a Uniform Vector Field
9: Domains with Circular Boundaries
10: Ellipse Elements with Continuity Conditions
11: Slit Element Formulation: Courant's Sewing Theorem with Circle Elements
12: Circular Arcs and Joukowsky's Wing
13: Complex Vector Fields with Divergence and Curl
14: Biharmonic Equation and the Kolosov Formulas
Further Reading
Analytic Elements from Separation of Variables
15: Overview
16: Separation for One-Dimensional Problems
17: Separation in Cartesian Coordinates
18: Separation in Circular-Cylindrical Coordinates
19: Separation in Spherical Coordinates
20: Separation in Spheroidal Coordinates
Further Reading
Analytic Elements from Singular Integral Equations
21: Formulation of Singular Integral Equations
22: Double Layer Elements
23: Single Layer Elements
24: Simpler Far-Field Representation
25: Polygon Elements
26: Curvilinear Elements
27: Three-Dimensional Vector Fields
Further Reading
A List of Symbols
B Solutions to Selected Problem Sets
References
Index

最近チェックした商品