The Disc Embedding Theorem

個数:

The Disc Embedding Theorem

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9780198841319
  • DDC分類 514.72

Full Description

Based on Fields medal winning work of Michael Freedman, this book explores the disc embedding theorem for 4-dimensional manifolds. This theorem underpins virtually all our understanding of topological 4-manifolds. Most famously, this includes the 4-dimensional Poincaré conjecture in the topological category.

The Disc Embedding Theorem contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided, as well as a stand-alone interlude that explains the disc embedding theorem's key role in all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. Additionally, the ramifications of the disc embedding theorem within the study of topological 4-manifolds, for example Frank Quinn's development of fundamental tools like transversality are broadly described.

The book is written for mathematicians, within the subfield of topology, specifically interested in the study of 4-dimensional spaces, and includes numerous professionally rendered figures.

Contents

Preface
1: Context for the disc embedding theorem
2: Outline of the upcoming proof
Part 1: Decomposition space theory
3: The Schoenflies theorem after Mazur, Morse, and Brown
4: Decomposition space theory and the Bing shrinking criterion
5: The Alexander gored ball and the Bing decomposition
6: A decomposition that does not shrink
7: The Whitehead decomposition
8: Mixed Bing-Whitehead decompositions
9: Shrinking starlike sets
10: The ball to ball theorem
Part II: Building skyscrapers
11: Intersection numbers and the statement of the disc embedding theorem
12: Gropes, towers, and skyscrapers
13: Picture camp
14: Architecture of infinite towers and skyscrapers
15: Basic geometric constructions
16: From immersed discs to capped gropes
17: Grope height raising and 1-storey capped towers
18: Tower height raising and embedding
Part III: Interlude
19: Good groups
20: The s-cobordism theorem, the sphere embedding theorem, and the Poincaré conjecture
21: The development of topological 4-manifold theory
22: Surgery theory and the classification of closed, simply connected 4-manifolds
23: Open problems
Part IV: Skyscrapers are standard
24: Replicable rooms and boundary shrinkable skyscrapers
25: The collar adding lemma
26: Key facts about skyscrapers and decomposition space theory
27: Skyscrapers are standard: an overview
28: Skyscrapers are standard: the details
Bibliography
Afterword
Index

最近チェックした商品