From Christoffel Words to Markoff Numbers

個数:

From Christoffel Words to Markoff Numbers

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 170 p.
  • 言語 ENG
  • 商品コード 9780198827542
  • DDC分類 512.73

Full Description

In 1875, Elwin Bruno Christoffel introduced a special class of words on a binary alphabet linked to continued fractions which would go onto be known as Christoffel words. Some years later, Andrey Markoff published his famous theory, the now called Markoff theory. It characterized certain quadratic forms and certain real numbers by extremal inequalities. Both classes are constructed using certain natural numbers — known as Markoff numbers — and they are characterized by a certain Diophantine equality. More basically, they are constructed using certain words — essentially the Christoffel words.

The link between Christoffel words and the theory of Markoff was noted by Ferdinand Frobenius in 1913, but has been neglected in recent times. Motivated by this overlooked connection, this book looks to expand on the relationship between these two areas. Part 1 focuses on the classical theory of Markoff, while Part II explores the more advanced and recent results of the theory of Christoffel words.

Contents

The Theory of Markoff
1: Basics
2: Words
2.1: Tiling the plane with a parallelogram
2.2: Christoffel words
2.3: Palindromes
2.4: Standard factorization
2.5: The tree of Christoffel pairs
2.6: Sturmian morphisms
3: Markoff numbers
3.1: Markoff triples and numbers
3.2: The tree of Markoff triples
3.3: The Markoff injectivity conjecture
4: The Markoff property
4.1: Markoff property for infinite words
4.2: Markoff property for bi-infinite words
5: Continued fractions
5.1: Finite continued fractions
5.2: Infinite continued fractions
5.3: Periodic expansions yield quadratic numbers
5.4: Approximations of real numbers
5.5: Lagrange number of a real number
5.6: Ordering continued fractions
6: Words and quadratic numbers
6.1: Continued fractions associated to Christoffel words
6.2: Marko supremum of a bi-innite sequence
6.3: Lagrange number of a sequence
7: Lagrange numbers less than 3
7.1: From L(s) < 3 to the Marko property
7.2: Bi-infinite sequences
8: Markoff's theorem for approximations
8.1: Main lemma
8.2: Markoff's theorem for approximations
8.3: Good and bad approximations
9: Markoff's theorem for quadratic forms
9.1: Indefinite real binary quadratic forms
9.2: Infimum
9.3: Markoff's theorem for quadratic forms
10: Numerology
10.1: Thirteen Markoff numbers
10.2: The golden ratio and other numbers
10.3: The matrices U(w) and Frobenius congruences
10.4: Markoff quadratic forms
11: Historical notes
The Theory of Christoel Words
12: Palindromes and periods
12.1: Palindromes
12.2: Periods
13: Lyndon words and Christoffel words
13.1: Slopes
13.2: Lyndon words
13.3: Maximal Lyndon words
13.4: Unbordered Sturmian words
13.5: Equilibrated Lyndon words
14: Stern-Brocot tree
14.1: The tree of Christoffel words
14.2: Stern-Brocot tree and continued fractions
14.3: The Raney tree and dual words
14.4: Convex hull
15: Conjugates and factors
15.1: Cayley graph
15.2: Conjugates
15.3: Factors
15.4: Palindromes again
15.5: Finite Sturmian words
16: Free group on two generators
16.1: Bases and automorphisms
16.2: Inner automorphisms
16.3: Christoffel bases
16.4: Nielsen's criterion
16.5: An algorithm for the bases
16.6: Sturmian morphisms again
17: Complements
17.1: Other results on Christoffel words
17.2: Lyndon words and Lie theory
17.3: Music

最近チェックした商品