Stochastic Processes and Random Matrices : Lecture Notes of the Les Houches Summer School: Volume 104, July 2015 (Lecture Notes of the Les Houches Summer School)

個数:

Stochastic Processes and Random Matrices : Lecture Notes of the Les Houches Summer School: Volume 104, July 2015 (Lecture Notes of the Les Houches Summer School)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 640 p.
  • 言語 ENG
  • 商品コード 9780198797319
  • DDC分類 512.9434

Full Description

The field of stochastic processes and Random Matrix Theory (RMT) has been a rapidly evolving subject during the last fifteen years. The continuous development and discovery of new tools, connections and ideas have led to an avalanche of new results. These breakthroughs have been made possible thanks, to a large extent, to the recent development of various new techniques in RMT.

Matrix models have been playing an important role in theoretical physics for a long time and they are currently also a very active domain of research in mathematics. An emblematic example of these recent advances concerns the theory of growth phenomena in the Kardar-Parisi-Zhang (KPZ) universality class where the joint efforts of physicists and mathematicians during the last twenty years have unveiled the beautiful connections between this fundamental problem of statistical mechanics and the theory of random matrices, namely the fluctuations of the largest eigenvalue of certain ensembles of random matrices.

This text not only covers this topic in detail but also presents more recent developments that have emerged from these discoveries, for instance in the context of low dimensional heat transport (on the physics side) or integrable probability (on the mathematical side).

Contents

1: Oriol Bohigas, Hans Weidenmüller: History
2: Alexei Borodin, Leonid Petrov: Integrable Probability: Stochastic Vertex Models and Symmetric Functions
3: Alice Guionnet: Free Probability
4: Herbet Spohn: The Kardar-Parisi-Zhang Equation: A Statistical Physics Perspective
5: Gernot Akemann: Random Matrix Theory and Quantum Chromodynamics
6: Jean-Philippe Bouchaud: Random Matrix Theory and (Big) Data Analysis
7: Bertrand Eynard: Random Matrices and Loop Equations
8: Jon P. Keating: Random Matrices and Number Theory: Some Recent Themes
9: Aris L. Moustakas: Modern Telecommunications: A Playground for Physicists?
10: Henning Schomerus: Random Matrix Approaches to Open Quantum Systems
11: Alain Comtet, Yves Tourigny: Impurity Models and Products of Random Matrices
12: Rémi Rhodes, Vincent Vargas: Gaussian Multiplicative Chaos and Lioville Quantum Gravity
13: Anton Zabrodin: Quantum Spin Chains and Classical Integrable Systems

最近チェックした商品