メゾスコピック系における量子輸送<br>Quantum Transport in Mesoscopic Systems : Complexity and Statistical Fluctuations. a Maximum Entropy Viewpoint

個数:

メゾスコピック系における量子輸送
Quantum Transport in Mesoscopic Systems : Complexity and Statistical Fluctuations. a Maximum Entropy Viewpoint

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 418 p.
  • 言語 ENG
  • 商品コード 9780198525837
  • DDC分類 530.12

基本説明

New in paperback. Hardcover was published in 2004. Pedagogical presentation of quantum scattering theory, linear response theory, and information theory, suitable for graduate courses.

Full Description

The aim of this book is to present a statistical theory of wave scattering by complex systems -systems which have a chaotic classical dynamics, as in the case of microwave cavities and quantum dots, or possess quenched randomness, as in the case of disordered conductors-- with emphasis on mesoscopic fluctuations.

The universal character of the statistical behavior of these phenomena is incorporated in a natural way by approaching the problem from a Maximum-Entropy viewpoint -Shannon's information entropy is maximized, subject to the symmetries and constraints that are physically relevant-- within the powerful, non-perturbative Theory of Random Matrices. This is a distinctive feature of the present book that greatly motivated our writing it. Another reason is that it collects in one place the material and notions -derived from the published work of the authors in collaboration with several co-workers, as well as from the work of others-- which are scattered through research journals and textbooks on the subject.

To make the book self-contained, we present in Chapters 2 and 3 the quantum theory of scattering, set in the context of quasi-one-dimensional, multichannel systems, thus related directly to scattering problems in mesoscopic physics. Chapter 4 discusses the linear-response theory of quantum electronic transport, adapted to the context of mesoscopic systems. These chapters, together with Chapter 5 on the Maximum-Entropy Approach and Chapter 8 on weak localization, have been written in a pedagogical style, and can be used as part of a graduate course. Chapters 6 and 7 discuss the problem of electronic transport through classically chaotic cavities and quasi-one-dimensional disordered systems. There are many exercises, most of them worked out in detail, distributed throughout the book. This should help graduate students, their teachers and the research scholars interested generally in the subject of quantum transport through disordered and chaotic systems in their preparation for it, and beyond.

Contents

1. Introduction ; 2. Quantum Mechanical Time Independent Scattering Theory I ; 3. Quantum Mechanical Time Independent Scattering Theory II ; 4. Linear Response Theory of Quantum Electronic Transport ; 5. The Maximum Entropy Approach ; 6. Electronic Transport through Open Chaotic Cavities ; 7. Electronic Transport through Quasi One-Dimensional Disordered Systems ; 8. An Introduction to Localization Theory ; A. The Theorem of Kane-Serota-Lee ; B. The Conductivity Tensor in RPA ; C. The Conductance in Terms of the Transmission Coefficient of the Sample ; D. Evaluation of the Invariant Measure

最近チェックした商品