The Global Approach to Quantum Field Theory (International Series of Monographs on Physics)

個数:

The Global Approach to Quantum Field Theory (International Series of Monographs on Physics)

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • ページ数 1136 p.
  • 言語 ENG
  • 商品コード 9780198510932
  • DDC分類 530.143

基本説明

Unlike any other book on the subject, fields are viewed as global entities in spacetime rather than as systems evolving from one instant of time to the next.

Full Description

The book shows how classical field theory, quantum mechanics, and quantum field theory are related. The
description is global from the outset. Quantization is explained using the Peierls bracket rather than the Poisson bracket. This allows one to deal immediately with observables, bypassing the canonical formalism of constrained Hamiltonian systems and bigger-than-physical Hilbert (or Fock) spaces. The Peierls bracket leads directly to the Schwinger variational principle and the Feynman functional integral, the latter of which is taken as defining the quantum theory.

Also included are the theory of tree amplitudes and conservation laws, which are presented classically and later extended to the quantum level. The quantum theory is developed from the many-worlds viewpoint, and ordinary path integrals and the topological issues to which they give rise are studied in some detail. The theory of mode functions and Bogoliubov coefficients for linear fields is fully developed, and then the quantum theory of nonlinear fields is confronted. The effective action, correlation functions and counter terms all make their appearance at this point, and the S-matrix is constructed via the introduction of asymptotic fields and the LSZ theorem. Gauge theories and ghosts are studied in great detail.

Many applications of the formalism are given: vacuum currents, anomalies, black holes, fourth-order systems, higher spin fields, the (lambda phi) to the fourth power model (and spontaneous symmetry breaking), quantum electrodynamics, the Yang-Mills field and its topology, the gravitational field, etc. Special chapters are devoted to
Euclideanization and renormalization, space and time inversion, and the closed-time-path or ``in-in'' formalism. Emphasis is given throughout to the role of the functional-integral measure in the theory. Six helpful appendices, ranging from superanalysis to analytic continuation in dimension, are included at the end.

Contents

1. FUNDAMENTALS; 7. CLASSICAL THEORY OF MEASUREMENT; 13. THE FUNCTIONAL INTEGRAL FOR STANDARD CANONICAL SYSTEMS; 17. LINEAR BOSON FIELDS IN STATIONARY BACKGROUNDS; 23. THE EFFECTIVE ACTION, THE S-MATRIX, AND SLAVNOV-TAYLOR IDENTITIES; 27. THE HEAT KERNEL; 32. EUCLIDEANIZATION AND RENORMALIZATION; X0 THE NONRELATIVISTIC PARTICLE IN FLAT SPACE