オックスフォード版 機械学習の社会学ハンドブック<br>The Oxford Handbook of the Sociology of Machine Learning (Oxford Handbooks)

個数:
電子版価格
¥33,269
  • 電子版あり

オックスフォード版 機械学習の社会学ハンドブック
The Oxford Handbook of the Sociology of Machine Learning (Oxford Handbooks)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 808 p.
  • 言語 ENG
  • 商品コード 9780197653609
  • DDC分類 303.4834

Full Description

Machine learning, renowned for its ability to detect patterns in large datasets, has seen a significant increase in applications and complexity since the early 2000s. The Oxford Handbook of the Sociology of Machine Learning offers a state-of-the-art and forward-looking overview of the intersection between machine learning and sociology, exploring what sociology can gain from machine learning and how it can shed new light on the societal implications of this technology. Through its 39 chapters, an international group of sociologists address three key questions. First, what can sociologists yield from using machine learning as a methodological tool? This question is examined across various data types, including text, images, and sound, with insights into how machine learning and ethnography can be combined. Second, how is machine learning being used throughout society, and what are its consequences? The Handbook explores this question by examining the assumptions and infrastructures behind machine learning applications, as well as the biases they might perpetuate. Themes include art, cities, expertise, financial markets, gender, race, intersectionality, law enforcement, medicine, and the environment, covering contexts across the Global South and Global North. Third, what does machine learning mean for sociological theory and theorizing? Chapters examine this question through discussions on agency, culture, human-machine interaction, influence, meaning, power dynamics, prediction, and postcolonial perspectives. The Oxford Handbook of the Sociology of Machine Learning is an essential resource for academics and students interested in artificial intelligence, computational social science, and the role and implications of machine learning in society.

Contents

About the Editors
Contributors

Part I: Introduction: The Past, Present, and Future of Machine Learning in Sociology

1. Sociology and Machine Learning
Juan Pablo Pardo-Guerra and Christian Borch

2. Machine Learning in Sociology: Current and Future Applications
Filiz Garip and Michael W. Macy

3. How Machine Learning Became Pervasive
Emilio Lehoucq

Part II: Machine Learning as a Methodological Toolbox

4. Corpus Modeling and the Geometries of Text: Meaning Spaces as Metaphor and Method
Dustin S. Stoltz, Marissa A. Combs, and Marshall A. Taylor

5. Sociolinguistic Perspectives on Machine Learning with Textual Data
AJ Alvero

6. Chinese Computational Sociology: Decolonial Applications of Machine Learning and Natural Language Processing Methods in Chinese-Language Contexts
Linda Hong Cheng and Yao Lu

7. Hate Speech Detection and Bias in Supervised Text Classification
Thomas R. Davidson

8. Analyzing Image Data with Machine Learning
Han Zhang

9. Sociogeographical Machine Learning: Using Machine Learning to Understand the Social Mechanisms of Place
Rolf Lyneborg Lund

10. The Machine Learning of Sound and Music in Sociological Research
Ke Nie

11. Munging the Ghosts in the Machine: Coded Bias and the Craft of Wrangling Archival Data
Vincent Yung and Jeannette A. Colyvas

12. Fitting Paradox: Machine Learning Algorithms vs Statistical Modeling
Eun Kyong Shin

13. Predictability Hypotheses: A Meta-Theoretical and Methodological Introduction
Austin van Loon

14. Ethnography and Machine Learning: Synergies and New Directions
Zhuofan Li and Corey M. Abramson

15. Machine Learning, Abduction, and Computational Ethnography
Philipp Brandt

Part III: Societal Machine Learning Applications

16. Machine Learning, Infrastructures, and their Sociomaterial Possibilities
Juan Pablo Pardo-Guerra

17. Race and Intersecting Inequalities in Machine Learning
Sharla Alegria

18. Gender, Sex, and the Constraints of Machine Learning Methods
Jeffrey W. Lockhart

19. Facial Recognition in Law Enforcement
Jens Hälterlein

20. Machine Learning in Chinese courts
Nyu Wang and Michael Yuan Tian

21. A Tale of Two Social Credit Systems: The Succeeded and Failed Adoption of Machine Learning in Sociotechnical Infrastructures
Chuncheng Liu

22. Machine Learning as a State Building Experiment: AI and Development in Africa
Yousif Hassan

23. The Use and Promises of Machine Learning in Financial Markets: From Mundane Practices to Complex Automated Systems
Taylor Spears and Kristian Bondo Hansen

24. Machine Learning and Large-scale Data for Understanding Urban Inequality
Jennifer Candipan and Jonathan Tollefson

25. Epistemic Infrastructures of Moral Decision-Making in the Ethics of Autonomous Driving
Maya Indira Ganesh

26. Machine Learning in Medical Systems: Toward a Sociological Agenda
Wanheng Hu

27. Machine Learning in the Arts and Cultural and Creative Industries
Mariya Dzhimova

28. Environment, Society, and Machine Learning
Caleb Scoville, Hilary Faxon, Melissa Chapman, Samantha Jo Fried, Lily Xu, Carl Boettiger, J. Michael Reed, Marcus Lapeyrolerie, Amy Van Scoyoc, Razvan Amironesei

29. Coding and Expertise
Alex Preda

Part IV: Machine Learning and Sociological Theory

30. How Machine Learning is Reviving Sociological Theorization
Laura K. Nelson and Jessica J. Santana

31. Quality Control for Quality Computational Concepts: Wrangling with Theory and Data Wrangling as Theorizing
Vincent Yung, Jeannette A. Colyvas, and Hokyu Hwang

32. Machine Agencies: Large Language Models as a Case for a Sociology of Machines
Ceyda Yolgörmez

33. Meaning and Machines
Oscar Stuhler, Dustin S. Stoltz, and John Levi Martin

34. Machine Learning and the Analysis of Culture
Sophie Mützel and Étienne Ollion

35. Estimating Social Influence Using Machine Learning and Digital Trace Data
Martin Arvidsson and Marc Keuschnigg

36. Computational Authority in Platform Society: Dimensions of Power in Machine Learning
Massimo Airoldi

37. Predictive Analytics: A Sociological Perspective
Simon Egbert

38. Theoretical Challenges of Human-Machine Interaction Towards a Sociology of Interfaces
Benjamin Lipp and Henning Mayer

39. Colonialities of Machine Learning
Christian Borch