天然資源の持続可能なガバナンス:機械学習による成功パターンの解明<br>Sustainable Governance of Natural Resources : Uncovering Success Patterns with Machine Learning

個数:
  • ポイントキャンペーン

天然資源の持続可能なガバナンス:機械学習による成功パターンの解明
Sustainable Governance of Natural Resources : Uncovering Success Patterns with Machine Learning

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 334 p.
  • 言語 ENG
  • 商品コード 9780197502211
  • DDC分類 333.70285631

Full Description

What can be done to ensure natural resources aren't exploited? Is it possible to determine how to sustainably manage them? What makes some systems successful? In Sustainable Governance of Natural Resources, Ulrich Frey delves deep into unanswered questions like these about resource management. The book explains the current state of biological cooperation mechanisms, case studies in the field, findings from economic-behavioral experiments, common-pool resource dilemmas, and how these are all relevant to these questions surrounding the best way to sustainably manage natural resources.

There are many case studies within the field of social-ecological systems, but there are few large-N studies conducted in a methodologically rigorous manner. Frey does just this and takes readers step-by-step through the preparation of datasets like the CPR, NIIS, and IFRI. He also grounds his research through the development of an indicator system which operationalizes 24 individually-synthesized success factors that influence the management of natural resources. The book reveals the practical and operational uses of measuring ecological success in this way, showcasing various statistical and machine learning methods to develop highly predictive, robust, and empirically-sound models. Three different methods, multivariate linear regressions, random forests, and artificial neural networks are compared to achieve robust results.

The book sheds new light on factors that have previously been investigated, allowing readers to build off of Frey's system and use his methods to determine whether or not their way of managing natural resources will yield ecological success in practice.

Contents

Acknowledgments

Chapter 1: Introduction
1.1 The high importance of natural resources
1.2 Research question and goals

Chapter 2: State of Research
2.1 What are fundamental biological mechanisms of cooperation?
2.2 What drives cooperation in laboratory experiments?
2.3 Common-pool resources
2.4 A primer on social-ecological systems
2.5 Potential success factors for sustainable management of social-ecological systems

Chapter 3: Data
3.1 Common-pool resource database
3.2 Nepal irrigation institution study database
3.3 International forestry resources and institutions database
3.4 Comparability of databases
3.5 Data preparation

Chapter 4: Methods
4.1 Introducing the three statistical methods used
4.2 Operationalizing the success factors via a new indicator system

Chapter 5: Results and Discussion
5.1 Synthesis of success factors
5.2 Results for the common-pool resource data
5.3 Results for the Nepal irrigation institution study data
5.4 Results for the international forestry resources and institutions data
5.5 Results for a combined full model
5.6 Robustness and sensitivity analyses

Chapter 6: Discussion and Conclusion
6.1 Final assessment
6.2 New findings
6.3 Summary
6.4 Outlook

Chapter 7: Appendix

References
Index

最近チェックした商品