Rを用いる行動科学・生物科学データ分析法<br>Research Methods Using R : Advanced Data Analysis in the Behavioural and Biological Sciences

個数:
  • ポイントキャンペーン

Rを用いる行動科学・生物科学データ分析法
Research Methods Using R : Advanced Data Analysis in the Behavioural and Biological Sciences

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 354 p.
  • 言語 ENG
  • 商品コード 9780192896599
  • DDC分類 300.285555

Full Description

Providing complete coverage of advanced research methods for undergraduates, Daniel H. Baker supports students in their mastery of more advanced research methods and their application in R.

This brand new title brings together coverage of a variety of topics for readers with basic statistical knowledge. It begins with material on the fundamental tools - nonlinear curve fitting and function optimization, stochastic methods, and Fourier (frequency) analysis - before leading readers on to more specialist content - bivariate and multivariate statistics, Bayesian statistics, and machine learning methods. Several chapters also discuss methods that can be used to improve research practises, including power analysis, meta-analysis, reproducible data analysis.

Written to build a student's confidence with using R in a step-by-step way, early chapters present the essentials, ensuring that the content is accessible to those that have never programmed before. By giving them a feel for how the software works in practice, students are gradually introduced to simple examples of techniques before building up to more detailed implementations demonstrated in worked examples.

Readers are also presented with opportunities to try analysis techniques for themselves. Practice questions are presented at the end of each chapter with answer guidance supplied in the book, while multiple-choice-questions with instant feedback can be accessed online. The author also provides datasets online which students can use to practise their new skills.

Digital formats and resources
This book is available for students and institutions to purchase in a variety of formats, and is supported by online resources.

- The e-book offers a mobile experience and convenient access along with functionality, navigation features, and links that offer extra learning support. This book is accompanied by online resources including multiple-choice-questions with instant feedback, example code, and data files allowing students to run examples independently.

Contents

1: Introduction
2: Introduction to the R environment
3: Cleaning and preparing data for analysis
4: Statistical tests as linear models
5: Power analysis
6: Meta-analysis
7: Mixed-effects models
8: Stochastic methods
9: Non-linear curve fitting
10: Fourier analysis
11: Multivariate t-tests
12: Structural equation modelling
13: Multidimensional scaling and k-means clustering
14: Multivariate pattern analysis
15: Correcting for multiple comparisons
16: Signal detection theory
17: Bayesian statistics
18: Plotting graphs and data visualisation
19: Reproducible data analysis

最近チェックした商品