- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
From molecular motors to bacteria, from crawling cells to large animals, active entities are found at all scales in the biological world. Active matter encompasses systems whose individual constituents irreversibly dissipate energy to exert self-propelling forces on their environment. Over the past twenty years, scientists have managed to engineer synthetic active particles in the lab, paving the way towards smart active materials. This book gathers a pedagogical set of lecture notes that cover topics in nonequilibrium statistical mechanics and active matter. These lecture notes stem from the first summer school on Active Matter delivered at the Les Houches school of Physics. The lectures covered four main research directions: collective behaviours in active-matter systems, passive and active colloidal systems, biophysics and active matter, and nonequilibrium statistical physics—from passive to active.
Contents
Introduction
Part 1: Collective behaviours in active-matter systems
1: Hugues Chate and Benoit Mahault: Dry, aligning, dilute, active matter: A synthetic and self-contained overview
2: John Toner: Why walking is easier than pointing: Hydrodynamics of dry active matter
3: Olivier Dauchot: Collective Motion in Active Materials: Model Experiments
4: Francesc Sagues, Pau Guillamat, Jérôme Hardoüin, Berta Martinez-Prat, and Jordi Ignés-Mullol: Features of interfaced and confined experimental active nematics
5: Leticia Cugliandolo and Giuseppe Gonnella: Phases of planar active matter
6: Michael E. Cates: Active Field Theories
Part 2: Passive & active colloidal systems
7: Celia Lozano, Tobias Bäuerle, and Clemens Bechinger: "Active brownian particles with programmable interaction rules"
8: Ramin Golestanian: Phoretic Active Matter
9: Thorsten Brazda, Xin Cao, and Clemens Bechinger: Nanotribology of Commensurate and Incommensurate Colloidal Monolayers on Periodic Surfaces
Part 3: From biophysics to active matter
10: Jean-François and Joanny Louis Brézin: Tissues as active materials
11: Erwin Frey and Fridtjof Brauns: Self-organisation of protein patterns
12: Eric R. Dufresne: Active materials: Biological benchmarks and transport limitations
Part 4: Non-equilibrium statistical physics, from passive to active
13: Daan Frenkel: Modelling the microscopic origins of active transport
14: Mehran Kardar: Fluctuation Induced Forces in and out of Equilibrium
15: Ludovic Berthier and Jorge Kurchan: Active glassy materials
16: Ydan Ben Dor, Yariv Kafri, and Julien Tailleur: Forces in dry active matter
17: Suzanne M. Fielding: Rheology of complex and active fluids



