Biometric Authentication : A Machine Learning Approach (Prentice Hall Information and System Sciences Series)

個数:

Biometric Authentication : A Machine Learning Approach (Prentice Hall Information and System Sciences Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 476 p.
  • 言語 ENG
  • 商品コード 9780137074839
  • DDC分類 620

Full Description


A breakthrough approach to improving biometrics performanceConstructing robust information processing systems for face and voice recognitionSupporting high-performance data fusion in multimodal systemsAlgorithms, implementation techniques, and application examplesMachine learning: driving significant improvements in biometric performanceAs they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems.Coverage includes: How machine learning approaches differ from conventional template matchingTheoretical pillars of machine learning for complex pattern recognition and classificationExpectation-maximization (EM) algorithms and support vector machines (SVM)Multi-layer learning models and back-propagation (BP) algorithmsProbabilistic decision-based neural networks (PDNNs) for face biometricsFlexible structural frameworks for incorporating machine learning subsystems in biometric applicationsHierarchical mixture of experts and inter-class learning strategies based on class-based modular networksMulti-cue data fusion techniques that integrate face and voice recognitionApplication case studies

Contents

Preface. 1. Overview. Introduction. Biometric Authentication Methods. Face Recognition: Reality and Challenge. Speaker Recognition: Reality and Challenge. Road Map of the Book. 2. Biometric Authentication Systems. Introduction. Design Tradeoffs. Feature Extraction. Adaptive Classifiers. Visual-Based Feature Extraction and Pattern Classification. Audio-Based Feature Extraction and Pattern Classification. Concluding Remarks. 3. Expectation-Maximization Theory. Introduction. Traditional Derivation of EM. An Entropy Interpretation. Doubly-Stochastic EM. Concluding Remarks. 4. Support Vector Machines. Introduction. Fisher's Linear Discriminant Analysis. Linear SVMs: Separable Case. Linear SVMs: Fuzzy Separation. Nonlinear SVMs. Biometric Authentication Application Examples. 5. Multi-Layer Neural Networks. Introduction. Neuron Models. Multi-Layer Neural Networks. The Back-Propagation Algorithms. Two-Stage Training Algorithms. Genetic Algorithm for Multi-Layer Networks. Biometric Authentication Application Examples. 6. Modular and Hierarchical Networks. Introduction. Class-Based Modular Networks. Mixture-of-Experts Modular Networks. Hierarchical Machine Learning Models. Biometric Authentication Application Examples. 7. Decision-Based Neural Networks. Introduction. Basic Decision-Based Neural Networks. Hierarchical Design of Decision-Based Learning Models. Two-Class Probabilistic DBNNs. Multiclass Probabilistic DBNNs. Biometric Authentication Application Examples. 8. Biometric Authentication by Face Recognition. Introduction. Facial Feature Extraction Techniques. Facial Pattern Classification Techniques. Face Detection and Eye Localization. PDBNN Face Recognition System Case Study. Application Examples for Face Recognition Systems. Concluding Remarks. 9. Biometric Authentication by Voice Recognition. Introduction. Speaker Recognition. Kernel-Based Probabilistic Speaker Models. Handset and Channel Distortion. Blind Handset-Distortion Compensation. Speaker Verification Based on Articulatory Features. Concluding Remarks. 10. Multicue Data Fusion. Introduction. Sensor Fusion for Biometrics. Hierarchical Neural Networks for Sensor Fusion. Multisample Fusion. Audio and Visual Biometric Authentication. Concluding Remarks. Appendix A. Convergence Properties of EM. Appendix B. Average DET Curves. Appendix C. Matlab Projects. Matlab Project 1: GMMs and RBF Networks for Speech Pattern Recognition. Matlab Project 2: SVMs for Pattern Classification. Bibliography. Index.

最近チェックした商品