Algebra (Classic Version) (Pearson Modern Classics for Advanced Mathematics Series) (2ND)

個数:

Algebra (Classic Version) (Pearson Modern Classics for Advanced Mathematics Series) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 560 p.
  • 言語 ENG
  • 商品コード 9780134689609
  • DDC分類 512.9

Full Description

Appropriate for one- or two-semester algebra courses




This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.





Algebra, 2nd Edition, by Michael Artin, provides comprehensive coverage at the level of an honors-undergraduate or introductory-graduate course. The second edition of this classic text incorporates twenty years of feedback plus the author's own teaching experience. This book discusses concrete topics of algebra in greater detail than others, preparing readers for the more abstract concepts; linear algebra is tightly integrated throughout.

Contents

1. Matrices

1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Determinants
1.5 Permutations
1.6 Other Formulas for the Determinant
1.7 Exercises

2. Groups

2.1 Laws of Composition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Integers
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Product Groups
2.12 Quotient Groups
2.13 Exercises

3. Vector Spaces

3.1 Subspaces of Rn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 Direct Sums
3.7 Infinite-Dimensional Spaces
3.8 Exercises

4. Linear Operators

4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and Diagonal Forms
4.7 Jordan Form
4.8 Exercises

5. Applications of Linear Operators

5.1 Orthogonal Matrices and Rotations
5.2 Using Continuity
5.3 Systems of Differential Equations
5.4 The Matrix Exponential
5.5 Exercises

6. Symmetry

6.1 Symmetry of Plane Figures
6.2 Isometries
6.3 Isometries of the Plane
6.4 Finite Groups of Orthogonal Operators on the Plane
6.5 Discrete Groups of Isometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representation
6.12 Finite Subgroups of the Rotation Group
6.13 Exercises

7. More Group Theory

7.1 Cayley's Theorem
7.2 The Class Equation
7.3 r-groups
7.4 The Class Equation of the Icosahedral Group
7.5 Conjugation in the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups of Order 12
7.9 The Free Group
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
7.12 Exercises

8. Bilinear Forms

8.1 Bilinear Forms
8.2 Symmetric Forms
8.3 Hermitian Forms
8.4 Orthogonality
8.5 Euclidean spaces and Hermitian spaces
8.6 The Spectral Theorem
8.7 Conics and Quadrics
8.8 Skew-Symmetric Forms
8.9 Summary
8.10 Exercises

9. Linear Groups

9.1 The Classical Groups
9.2 Interlude: Spheres
9.3 The Special Unitary Group SU2
9.4 The Rotation Group SO3
9.5 One-Parameter Groups
9.6 The Lie Algebra
9.7 Translation in a Group
9.8 Normal Subgroups of SL2
9.9 Exercises

10. Group Representations

10.1 Definitions
10.2 Irreducible Representations
10.3 Unitary Representations
10.4 Characters
10.5 One-Dimensional Characters
10.6 The Regular Representations
10.7 Schur's Lemma
10.8 Proof of the Orthogonality Relations
10.9 Representationsof SU2
10.10 Exercises

11. Rings

11.1 Definition of a Ring
11.2 Polynomial Rings
11.3 Homomorphisms and Ideals
11.4 Quotient Rings
11.5 Adjoining Elements
11.6 Product Rings
11.7 Fraction Fields
11.8 Maximal Ideals
11.9 Algebraic Geometry
11.10 Exercises

12. Factoring

12.1 Factoring Integers
12.2 Unique Factorization Domains
12.3 Gauss's Lemma
12.4 Factoring Integer Polynomial
12.5 Gauss Primes
12.6 Exercises

13. Quadratic Number Fields

13.1 Algebraic Integers
13.2 Factoring Algebraic Integers
13.3 Ideals in Z √(-5)
13.4 Ideal Multiplication
13.5 Factoring Ideals
13.6 Prime Ideals and Prime Integers
13.7 Ideal Classes
13.8 Computing the Class Group
13.9 Real Quadratic Fields
13.10 About Lattices
13.11 Exercises

14. Linear Algebra in a Ring

14.1 Modules
14.2 Free Modules
14.3 Identities
14.4 Diagonalizing Integer Matrices
14.5 Generators and Relations
14.6 Noetherian Rings
14.7 Structure to Abelian Groups
14.8 Application to Linear Operators
14.9 Polynomial Rings in Several Variables
14.10 Exercises

15. Fields

15.1 Examples of Fields
15.2 Algebraic and Transcendental Elements
15.3 The Degree of a Field Extension
15.4 Finding the Irreducible Polynomial
15.5 Ruler and Compass Constructions
15.6 Adjoining Roots
15.7 Finite Fields
15.8 Primitive Elements
15.9 Function Fields
15.10 The Fundamental Theorem of Algebra
15.11 Exercises

16. Galois Theory

16.1 Symmetric Functions
16.2 The Discriminant
16.3 Splitting Fields
16.4 Isomorphisms of Field Extensions
16.5 Fixed Fields
16.6 Galois Extensions
16.7 The Main Theorem
16.8 Cubic Equations
16.9 Quartic Equations
16.10 Roots of Unity
16.11 Kummer Extensions
16.12 Quintic Equations
16.13 Exercises

Appendix A. Background Material

A.1 About Proofs
A.2 The Integers
A.3 Zorn's Lemma
A.4 The Implicit Function Theorem
A.5 Exercises

最近チェックした商品