Introduction to Programming in Python : An Interdisciplinary Approach

個数:

Introduction to Programming in Python : An Interdisciplinary Approach

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 792 p.
  • 言語 ENG
  • 商品コード 9780134076430
  • DDC分類 006.76

Full Description

Today, anyone in a scientific or technical discipline needs programming skills. Python is an ideal first programming language, and Introduction to Programming in Python is the best guide to learning it.

Princeton University's Robert Sedgewick, Kevin Wayne, and Robert Dondero have crafted an accessible, interdisciplinary introduction to programming in Python that emphasizes important and engaging applications, not toy problems. The authors supply the tools needed for students to learn that programming is a natural, satisfying, and creative experience.

This example-driven guide focuses on Python's most useful features and brings programming to life for every student in the sciences, engineering, and computer science.

Coverage includes



Basic elements of programming: variables, assignment statements, built-in data types, conditionals, loops, arrays, and I/O, including graphics and sound
Functions, modules, and libraries: organizing programs into components that can be independently debugged, maintained, and reused
Object-oriented programming and data abstraction: objects, modularity, encapsulation, and more
Algorithms and data structures: sort/search algorithms, stacks, queues, and symbol tables
Examples from applied math, physics, chemistry, biology, and computer science—all compatible with Python 2 and 3

Drawing on their extensive classroom experience, the authors provide Q&As, exercises, and opportunities for creative practice throughout. An extensive amount of supplementary information is available at introcs.cs.princeton.edu/python. With source code, I/O libraries, solutions to selected exercises, and much more, this companion website empowers people to use their own computers to teach and learn the material.

Contents

Preface xiii

Chapter 1: Elements of Programming 1

1.1 Your First Program 2

1.2 Built-in Types of Data 14

1.3 Conditionals and Loops 56

1.4 Arrays 100

1.5 Input and Output 140

1.6 Case Study: Random Web Surfer 188

Chapter 2: Functions and Modules 209

2.1 Defining Functions 210

2.2 Modules and Clients 248

2.3 Recursion 290

2.4 Case Study: Percolation 322

Chapter 3: Object-Oriented Programming 351

3.1 Using Data Types 352

3.2 Creating Data Types 402

3.3 Designing Data Types 450

3.4 Case Study: N-Body Simulation 496

Chapter 4: Algorithms and Data Structures 511

4.1 Performance 512

4.2 Sorting and Searching 556

4.3 Stacks and Queues 590

4.4 Symbol Tables 634

4.5 Case Study: Small-World Phenomenon 684

Context 729

Glossary 733

Index 739

Each section concludes with Q&A and Exercises.

最近チェックした商品