Data Science, Analytics and Machine Learning with R

個数:
電子版価格
¥24,648
  • 電子版あり

Data Science, Analytics and Machine Learning with R

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 660 p.
  • 言語 ENG
  • 商品コード 9780128242711
  • DDC分類 658.05631

Full Description

Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning.

In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear.

Contents

Part I: Introduction
1. Overview of Data Science, Analytics, and Machine Learning
2. Introduction to the R Language

Part II: Applied Statistics and Data Visualization
3. Variables and Measurement Scales
4. Descriptive and Probabilistic Statistics
5. Hypotheses Tests
6. Data Visualization and Multivariate Graphs

Part III: Data Mining and Preparation
7. Building Handcrafted Robots
8. Using APIs to Collect Data
9. Managing Data

Part IV: Unsupervised Machine Learning Techniques
10. Cluster Analysis
11. Factorial and Principal Component Analysis (PCA)
12. Association Rules and Correspondence Analysis

Part V: Supervised Machine Learning Techniques
13. Simple and Multiple Regression Analysis
14. Binary, Ordinal and Multinomial Regression Analysis
15. Count-Data and Zero-Inflated Regression Analysis
16. Generalized Linear Mixed Models

Part VI: Improving Performance and Introduction to Deep Learning
17. Support Vector Machine
18. CART (Classification and Regression Trees)
19. Bagging, Boosting and Uplift (Persuasion) Modeling
20. Random Forest
21. Artificial Neural Network
22. Introduction to Deep Learning

Part VII: Spatial Analysis
23. Working on Shapefiles
24. Dealing with Simple Features Objects
25. Raster Objects
26. Exploratory Spatial Analysis

Part VII: Adding Value to your Work
27. Enhanced and Interactive Graphs
28. Dashboards with R

最近チェックした商品