AIを利用する計算・データ駆動化学 第1巻:基礎・手法・応用<br>Computational and Data-Driven Chemistry Using Artificial Intelligence : Fundamentals, Methods and Applications

個数:
電子版価格
¥32,707
  • 電子版あり

AIを利用する計算・データ駆動化学 第1巻:基礎・手法・応用
Computational and Data-Driven Chemistry Using Artificial Intelligence : Fundamentals, Methods and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 278 p.
  • 言語 ENG
  • 商品コード 9780128222492
  • DDC分類 542.8563

Full Description

Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications.

Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed.

Contents

1. Introduction to Computational and Data-Driven Chemistry Using AI
2. Goal-directed generation of new molecules by AI methods
3. Compounds based on structural database of X-ray crystallography
4. Approaches using AI in Medicinal Chemistry
5. Application of Machine learning algorithms for use in material chemistry
6. Predicting Conformers of Flexible Metal Complexes using Deep Neural Network
7. Predicting Activity and Activation Factor of Catalytic Reactions Using Machine Learning
8. Convolutional Neural Networks for the Design and Analysis of Non-Fullerene Acceptors

最近チェックした商品