深層学習手法の最新傾向:アルゴリズム・応用・システム<br>Trends in Deep Learning Methodologies : Algorithms, Applications, and Systems (Hybrid Computational Intelligence for Pattern Analysis and Understanding)

個数:
電子版価格
¥24,317
  • 電子版あり

深層学習手法の最新傾向:アルゴリズム・応用・システム
Trends in Deep Learning Methodologies : Algorithms, Applications, and Systems (Hybrid Computational Intelligence for Pattern Analysis and Understanding)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 306 p.
  • 言語 ENG
  • 商品コード 9780128222263
  • DDC分類 006.3

Full Description

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more.

In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.

Contents

1. An Introduction/ theoretical understanding to deep learning - challenges, feasibility in domains
2. Deep learning for big data
3. Deep learning in signal processing
4. Deep learning in image processing
5. Deep learning in video processing
6. Deep learning in audio/speech processing
7. Deep learning in data mining
8. Deep learning in healthcare
9. Deep learning in biomedical research
10. Deep learning in agriculture
11. Deep learning in environmental sciences
12. Deep learning in economics/e-commerce
13. Deep learning in forensics (biometrics recognition)
14. Deep learning in cybersecurity
15. Deep learning for smart cities, smart hospitals, and smart homes

最近チェックした商品