Handbook of HydroInformatics : Volume II: Advanced Machine Learning Techniques

個数:
電子版価格
¥29,701
  • 電子版あり

Handbook of HydroInformatics : Volume II: Advanced Machine Learning Techniques

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 418 p.
  • 言語 ENG
  • 商品コード 9780128219614
  • DDC分類 551.480285

Full Description

Advanced Machine Learning Techniques includes the theoretical foundations of modern machine learning, as well as advanced methods and frameworks used in modern machine learning. Handbook of HydroInformatics, Volume II: Advanced Machine Learning Techniques presents both the art of designing good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees. The global contributors cover theoretical foundational topics such as computational and statistical convergence rates, minimax estimation, and concentration of measure as well as advanced machine learning methods, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation; additionally, advanced frameworks such as privacy, causality, and stochastic learning algorithms are also included. Lastly, the volume presents Cloud and Cluster Computing, Data Fusion Techniques, Empirical Orthogonal Functions and Teleconnection, Internet of Things, Kernel-Based Modeling, Large Eddy Simulation, Patter Recognition, Uncertainty-Based Resiliency Evaluation, and Volume-Based Inverse Mode.  

This is an interdisciplinary book, and the audience includes postgraduates and early-career researchers interested in:  Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, Chemical Engineering.

Contents

35. Bayesian Estimation
36. Cloud and Cluster Computing
37. Computational and Statistical Convergence Rates
38. Concentration of Measure
39. Cross Validation
40. Data Assimilation
41. Data Fusion Techniques
42. Deep Learning
43. Empirical Orthogonal Functions
44. Empirical Orthogonal Teleconnection
45. Error Modeling
46. GARCH Time Series Analysis
47. Gradient-Based Optimization
48. Internet-Based Methods
49. Internet of Things
50. Kernel-Based Modeling
51. Large Eddy Simulation
52. Markov Chain Monte Carlo Methods
53. Minimax Estimation
54. Model Fusion Approach
55. Monitoring Quality Sensors
56. Nested Reinforcement Learning
57. Nested Stochastic Dynamic Programming
58. Nonparametric Density estimation
59. Nonparametric Regressions
60. Operational Real-Time Forecasting
61. Patter Recognition
62. Self-Adaptive Evolutionary Extreme Learning Machine
63. Stochastic Learning Algorithms
64. Supercomputing Methods (Parallelization/GPU)
65. Transient-Based Time-Frequency Analysis
66. Uncertainty-Based Resiliency Evaluation
67. Volume-Based Inverse Mode
68. WebGIS

最近チェックした商品