医学における人工知能<br>Artificial Intelligence in Medicine : Technical Basis and Clinical Applications

個数:
電子版価格
¥32,265
  • 電子版あり

医学における人工知能
Artificial Intelligence in Medicine : Technical Basis and Clinical Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 568 p.
  • 言語 ENG
  • 商品コード 9780128212592
  • DDC分類 610.28563

Full Description

Artificial Intelligence Medicine: Technical Basis and Clinical Applications presents a comprehensive overview of the field, ranging from its history and technical foundations, to specific clinical applications and finally to prospects. Artificial Intelligence (AI) is expanding across all domains at a breakneck speed. Medicine, with the availability of large multidimensional datasets, lends itself to strong potential advancement with the appropriate harnessing of AI.

The integration of AI can occur throughout the continuum of medicine: from basic laboratory discovery to clinical application and healthcare delivery. Integrating AI within medicine has been met with both excitement and scepticism. By understanding how AI works, and developing an appreciation for both limitations and strengths, clinicians can harness its computational power to streamline workflow and improve patient care. It also provides the opportunity to improve upon research methodologies beyond what is currently available using traditional statistical approaches. On the other hand, computers scientists and data analysts can provide solutions, but often lack easy access to clinical insight that may help focus their efforts. This book provides vital background knowledge to help bring these two groups together, and to engage in more streamlined dialogue to yield productive collaborative solutions in the field of medicine.

Contents

I Introduction

1. Artificial intelligence in medicine: past, present, and future2. Artificial intelligence in medicine: Technical basis and clinical applications

II Technical basis

3. Deep learning for biomedical videos: perspective and recommendations4. Biomedical imaging and analysis through deep learning5. Expert systems in medicine6. Privacy-preserving collaborative deep learning methods for multiinstitutional training without sharing patient data7. Analytics methods and tools for integration of biomedical data in medicine

III Clinical applications

8. Electronic health record data mining for artificial intelligence healthcare9. Roles of artificial intelligence in wellness, healthy living, and healthy status sensing10. The growing significance of smartphone apps in data-driven clinical decision-making: Challenges and pitfalls11. Artifical intelligence for pathology12. The potential of deep learning for gastrointestinal endoscopy-a disruptive new technology13. Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographs14. Artificial intelligence in radiology15. Artificial intelligence and interpretations in breast cancer imaging 16. Prospect and adversity of artificial intelligence in urology17. Meaningful incorporation of artificial intelligence for personalized patient management during cancer: Quantitative imaging, risk assessment, and therapeutic outcomes18. Artificial intelligence in oncology19. Artificial intelligence in cardiovascular imaging20. Artificial intelligence as applied to clinical neurological conditions21. Harnessing the potential of artificial neural networks for pediatric patient management22. Artificial intelligence—enabled public health surveillance—from local detection to global epidemic monitoring and control

IV Future outlook

23. Regulatory, social, ethical, and legal issues of artificial intelligence in medicine24. Industry perspectives and commercial opportunities of artificial intelligence in medicine25. Outlook of the future landscape of artificial intelligence in medicine and new challenges

最近チェックした商品