Applications of Artificial Intelligence in Process Systems Engineering

個数:
電子版価格
¥30,774
  • 電子版あり

Applications of Artificial Intelligence in Process Systems Engineering

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 540 p.
  • 言語 ENG
  • 商品コード 9780128210925
  • DDC分類 660.281563

Full Description

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning.

With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases.

Contents

Part I: Introduction of AI and Big Data Analytics
1. Artificial Intelligence in Chemical Engineering: Past, Current, and Prospect.
2. Big Data Analytics in Process System Engineering
3. Advanced Computational Tools and Platform for Artificial Intelligence

Part II: Property Prediction
4. Applications of Artificial Neural Networks for Thermodynamics: Vapor-Liquid Equilibrium Predictions
5. Support Vector Machines for The Prediction of Physical-Chemical Properties
6. Thermodynamics Prediction: Neural Networks Based Quantitative Structure Property Relationships
7. Intelligent Approaches to Forecast the Chemical Property: Case Study in Papermaking Process

Part III: Process Modelling
8. Artificial Neural Networks for Modelling of Wastewater Treatment Process
9. COD Forecasting Based LSTM Algorithm for Wastewater Treatment Process
10. Comparisons of Deep Learning Methods for Process Modelling: A Case Study of Bio-Hydrogen Production
11. Deep Learning Based Energy Consumption Forecasting Model for Process Industry
12. Chemical Green Product Design Assisted with Machine Learning: Theory and Methods

Part IV: Process Control and Fault Diagnosis
13. Artificial Intelligence for the Modelling and Control of Chemical Process Systems
14. Artificial Intelligence for Management and Control of The Pollution Minimization
15. Neural Network Based Framework for Fault Diagnosis
16. Application of Artificial Intelligence in Process Fault Diagnosis

Part V: Process Optimization
17. Bi-Level Model Reduction for Multiscale Stochastic Optimization of Cooling Water System
18. Artificial Intelligence Algorithm Based Multi-Object Optimization of Flexible Flow Shop Smart Scheduling
19. Electricity Scheduling Optimization Model for Flexible Production Process
20. Data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty