データ解析のための深層学習:基盤・生医学的応用・課題<br>Deep Learning for Data Analytics : Foundations, Biomedical Applications, and Challenges

個数:
電子版価格
¥27,659
  • 電子版あり

データ解析のための深層学習:基盤・生医学的応用・課題
Deep Learning for Data Analytics : Foundations, Biomedical Applications, and Challenges

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 218 p.
  • 言語 ENG
  • 商品コード 9780128197646

Full Description

Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis.

Contents

Section I Deep Learning Basics and Mathematical Background
1. Introduction to Deep Learning
2. Probability and information Theory
3. Deep Learning Basics
4. Deep Architectures
5. Deep Auto-Encoders
6. Multilayer Perceptron
7. Artificial Neural Network
8. Deep Neural Network
9. Deep Belief Network
10. Recurrent Neural Networks
11. Convolutional Neural Networks
12. Restricted Boltzmann Machines

Section II Deep Learning in Data Science
13. Data Analytics Basics
14. Enterprise Data Science
15. Predictive Analysis
16. Scalability of deep learning methods
17. Statistical learning for mining and analysis of big data
18. Computational Intelligence Methodology for Data Science
19. Optimization for deep learning (e.g. model structure optimization, large-scale optimization, hyper-parameter optimization, etc)
20. Feature selection using deep learning
21. Novel methodologies using deep learning for classification, detection and segmentation

Section III Deep Learning in Engineering Applications
22. Deep Learning for Pattern Recognition
23. Deep Learning for Biomedical Engineering
24. Deep Learning for Image Processing
25. Deep Learning for Image Classification
26. Deep Learning for Medical Image Recognition
27. Deep learning for Remote Sensing image processing
28. Deep Learning for Image and Video Retrieval
29. Deep Learning for Visual Saliency
30. Deep Learning for Visual Understanding
31. Deep Learning for Visual Tracking
32. Deep Learning for Object Segmentation and Shape Models
33. Deep Learning for Object Detection and Recognition
34. Deep Learning for Human Actions Recognition
35. Deep Learning for Facial Recognition
36. Deep Learning for Scene Understanding
37. Deep Learning for Internet of Things
38. Deep Learning for Big Data Analytics
39. Deep Learning for Clinical and Health Informatics
40. Deep Learning foe Sentiment Analysis

最近チェックした商品