機械学習:手法と脳疾患への応用<br>Machine Learning : Methods and Applications to Brain Disorders

個数:
電子版価格
¥32,265
  • 電子版あり

機械学習:手法と脳疾患への応用
Machine Learning : Methods and Applications to Brain Disorders

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 408 p.
  • 言語 ENG
  • 商品コード 9780128157398
  • DDC分類 616.800285631

Full Description

Machine Learning is an area of artificial intelligence involving the development of algorithms to discover trends and patterns in existing data; this information can then be used to make predictions on new data. A growing number of researchers and clinicians are using machine learning methods to develop and validate tools for assisting the diagnosis and treatment of patients with brain disorders. Machine Learning: Methods and Applications to Brain Disorders provides an up-to-date overview of how these methods can be applied to brain disorders, including both psychiatric and neurological disease. This book is written for a non-technical audience, such as neuroscientists, psychologists, psychiatrists, neurologists and health care practitioners.

Contents

Part I
1. Introduction to machine learning
2. Main concepts in machine learning
3. Applications of machine learning to brain disorders

Part II
4. Linear regression
5. Linear methods for classification
6. Support vector machine
7. Support vector regression
8. Multiple kernel learning
9. Deep neural networks
10. Convolutional neural networks
11. Autoencoders
12. Principal component analysis
13. K-means clustering

Part III
14. Dealing with missing data, small sample sizes, and heterogeneity
15. Working with high dimensional feature spaces: the example of voxel-wise encoding models
16. Multimodal integration
17. Bias, noise and interpretability in machine learning: from measurements to features
18. Ethical issues in the application of machine learning to brain disorders

Part IV
19. A step-by-step tutorial on how to build a machine learning model

最近チェックした商品