ビッグデータの原理と応用(第2版)<br>Principles and Practice of Big Data : Preparing, Sharing, and Analyzing Complex Information (2ND)

個数:
電子版価格
¥13,160
  • 電子版あり

ビッグデータの原理と応用(第2版)
Principles and Practice of Big Data : Preparing, Sharing, and Analyzing Complex Information (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 480 p.
  • 言語 ENG
  • 商品コード 9780128156094
  • DDC分類 005.74

Full Description

Principles and Practice of Big Data: Preparing, Sharing, and Analyzing Complex Information, Second Edition updates and expands on the first edition, bringing a set of techniques and algorithms that are tailored to Big Data projects. The book stresses the point that most data analyses conducted on large, complex data sets can be achieved without the use of specialized suites of software (e.g., Hadoop), and without expensive hardware (e.g., supercomputers). The core of every algorithm described in the book can be implemented in a few lines of code using just about any popular programming language (Python snippets are provided).

Through the use of new multiple examples, this edition demonstrates that if we understand our data, and if we know how to ask the right questions, we can learn a great deal from large and complex data collections. The book will assist students and professionals from all scientific backgrounds who are interested in stepping outside the traditional boundaries of their chosen academic disciplines.

Contents

1. Introduction2. Providing Structure to Unstructured Data3. Identification, Deidentification, and Reidentification4. Metadata, Semantics, and Triples5. Classifications and Ontologies6. Introspection7. Data Integration and Software Interoperability8. Immutability and Immortality9. Assessing the Adequacy of a Big Data Resource10. Measurement11. Indispensable Tips for Fast and Simple Big Data Analysis12. Finding the Clues in Large Collections of Data13. Using Random Numbers to Bring Your Big Data Analytic Problems Down to Size14. Special Considerations in Big Data Analysis15. Big Data Failures and How to Avoid (Some of) Them16. Legalities17. Data Sharing18. Data Reanalysis: Much More Important than Analysis19. Repurposing Big Data

最近チェックした商品