データサイエンスのためのメタ解析<br>Meta-Analytics : Consensus Approaches and System Patterns for Data Analysis

個数:
電子版価格
¥11,389
  • 電子版あり

データサイエンスのためのメタ解析
Meta-Analytics : Consensus Approaches and System Patterns for Data Analysis

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 340 p.
  • 言語 ENG
  • 商品コード 9780128146231
  • DDC分類 005.7

Full Description

Meta-Analytics: Consensus Approaches and System Patterns for Data Analysis presents an exhaustive set of patterns for data science to use on any machine learning based data analysis task. The book virtually ensures that at least one pattern will lead to better overall system behavior than the use of traditional analytics approaches. The book is 'meta' to analytics, covering general analytics in sufficient detail for readers to engage with, and understand, hybrid or meta- approaches. The book has relevance to machine translation, robotics, biological and social sciences, medical and healthcare informatics, economics, business and finance.

Inn addition, the analytics within can be applied to predictive algorithms for everyone from police departments to sports analysts.

Contents

1. Ground truthing2. Experiment design3. Meta-Analytic design patterns4. Sensitivity analysis and big system engineering5. Multi-path predictive selection6. Modeling and model fitting: including Antibody model, stem-differentiated cell model, and chemical, physical and environmental models for greater diversity in form7. Synonym-antonym and Reinforce-Void patterns and their value in data consensus, data anonymization, and data normalization8. Meta-analytics as analytics around analytics (functional metrics, entropy, EM). Ingesting statistical approaches for specific domains and generalizing them for data hybrid systems9. System design optimization (entropy, error variance, coupling minimization F-score)10. Aleatory techniques/expert system techniques...tie to ground truthing and error testing11. Applications: machine translation, robotics, biological and social sciences, medical and healthcare informatics, economics, business and finance12. Discussion and Conclusions, and the Future of Data

最近チェックした商品