Adaptive Learning Methods for Nonlinear System Modeling

個数:
電子版価格
¥29,272
  • 電子版あり
  • ポイントキャンペーン

Adaptive Learning Methods for Nonlinear System Modeling

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 388 p.
  • 言語 ENG
  • 商品コード 9780128129760
  • DDC分類 629.836

Full Description

Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others.

This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems.

Contents

1. Introduction

PART I - LINEAR-IN-THE-PARAMETERS NONLINEAR FILTERS
2. Orthogonal LIP Nonlinear Filters
3. Spline Adaptive Filters: Theory and Applications
4. Recent Advances on LIP Nonlinear Filters and Their Applications: Efficient Solutions and Significance Aware Filtering

PART II - ADAPTIVE ALGORITHMS IN THE REPRODUCING KERNEL HILBERT SPACE
5. Maximum Correntropy Criterion Based Kernel Adaptive Filters
6. Kernel Subspace Learning for Pattern Classification
7. A Random Fourier Features Perspective of KAFs with Application to Distributed Learning over Networks
8. Kernel-based Inference of Functions over Graphs

PART III - NONLINEAR MODELING WITH MULTIPLE LEARNING MACHINES
9. Online Nonlinear Modeling via Self-Organizing Trees
10. Adaptation and Learning Over Networks for Nonlinear System Modeling
11. Cooperative Filtering Architectures for Complex Nonlinear Systems

PART IV - NONLINEAR MODELING BY NEURAL NETWORKS
12. Echo State Networks for Multidimensional Data: Exploiting Noncircularity and Widely Linear Models
13. Identification of Short-Term and Long-Term Functional Synaptic Plasticity from Spiking Activities
14. Adaptive H∞ Tracking Control of Nonlinear Systems using Reinforcement Learning
15. Adaptive Dynamic Programming for Optimal Control of Nonlinear Distributed Parameter Systems

最近チェックした商品