- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging.
Contents
1. Introductory Background
2. Basic segmentation models
3. Standard optimization techniques
4. High-order models
5. Advanced optimization: Auxiliary functions and pseudo bounds
6. Advanced optimization: Trust region
7. Medical imaging applications
8. Appendix



