Source Separation and Machine Learning

電子版価格
¥17,018
  • 電子版あり
  • ポイントキャンペーン

Source Separation and Machine Learning

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9780128045664
  • DDC分類 621

Full Description


Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.

Contents

Part I Fundamental Theories 1. Introduction 2. Model-based blind source separation 3. Adaptive learning machinePart II Advanced Studies 4. Independent component analysis 5. Nonnegative matrix factorization 6. Nonnegative tensor factorization 7. Deep neural network 8. Summary and Future Trends

最近チェックした商品