Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems

個数:
電子版価格
¥18,047
  • 電子版あり

Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 260 p.
  • 言語 ENG
  • 商品コード 9780128042946

Full Description

Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions.

The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincaré mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity.

Contents

An introductory example

I. Piecewise-smooth systems of forced ODEs

I.2. Bifurcation from family of periodic orbits in autonomous systems

I.3. Bifurcation from single periodic orbit in autonomous systems

I.4. Sliding solution of periodically perturbed systems

I.5. Weakly coupled oscillators

Reference

II. Forced hybrid systems

II.1. Periodically forced impact systems

II.2. Bifurcation from family of periodic orbits in forced billiards

Reference

III. Continuous approximations of non-smooth systems

III.1. Transversal periodic orbits

III.2. Sliding periodic orbits

III.3. Impact periodic orbits

III.4. Approximation and dynamics

Reference

Appendix

最近チェックした商品