データサイエンティスト入門<br>Data Architecture: A Primer for the Data Scientist : Big Data, Data Warehouse and Data Vault

個数:
電子版価格
¥8,289
  • 電子版あり

データサイエンティスト入門
Data Architecture: A Primer for the Data Scientist : Big Data, Data Warehouse and Data Vault

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 378 p.
  • 言語 ENG
  • 商品コード 9780128020449
  • DDC分類 005.743

Full Description

Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can't be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist.

Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You'll be able to:



Turn textual information into a form that can be analyzed by standard tools.
Make the connection between analytics and Big Data
Understand how Big Data fits within an existing systems environment
Conduct analytics on repetitive and non-repetitive data

Contents

1. Corporate Data2. Big Data3. Data Warehouse4. Data Vault5. Operational Systems6. Architecture7. Analysis and Visualization of Data8. Analytics for Structured Data9. Analytics for Unstructured Repetitive Data10. Analytics for Unstructured Non-Repetitive Data11. Glossary of Terms

最近チェックした商品