材料科学・工学のための情報学<br>Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application

個数:
電子版価格
¥26,534
  • 電子版あり

材料科学・工学のための情報学
Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 542 p.
  • 言語 ENG
  • 商品コード 9780123943996
  • DDC分類 620.11

Full Description

Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis.

The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution.

This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science.

This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field.

Contents

Preface: A Reading Guide xiii
Acknowledgment xv
1. Materials Informatics: An Introduction 1
2. Data Mining in Materials Science and Engineering 17
3. Novel Approaches to Statistical Learning in Materials Science 37
4. Cluster Analysis: Finding Groups in Data 53
5. Evolutionary Data-Driven Modeling 71
6. Data Dimensionality Reduction in Materials Science 97
7. Visualization in Materials Research: Rendering Strategies
of Large Data Sets 121
8. Ontologies and Databases < Knowledge Engineering
for Materials Informatics 147
9. Experimental Design for Combinatorial Experiments 189
10. Materials Selection for Engineering Design 219
11. Thermodynamic Databases and Phase Diagrams 245
12. Towards Rational Design of Sensing Materials
from Combinatorial Experiments 271
13. High-Performance Computing for Accelerated Zeolitic
Materials Modeling 315
14. Evolutionary Algorithms Applied to Electronic-Structure
Informatics: Accelerated Materials Design Using Data
Discovery vs. Data Searching 349
15. Informatics for Crystallography: Designing Structure Maps 365
16. From Drug Discovery QSAR to Predictive Materials QSPR:
The Evolution of Descriptors, Methods, and Models 385
17. Organic Photovoltaics 423
18. Microstructure Informatics 443
19. Artworks and Cultural Heritage Materials: Using Multivariate
Analysis to Answer Conservation Questions 467
20. Data Intensive Imaging and Microscopy: A Multidimensional
Data Challenge 495
References 510
Index 513

最近チェックした商品