初等微分幾何(改訂第2版)<br>Elementary Differential Geometry, Revised 2nd Edition (2ND)

個数:

初等微分幾何(改訂第2版)
Elementary Differential Geometry, Revised 2nd Edition (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 520 p./サイズ 200 illus.
  • 言語 ENG
  • 商品コード 9780120887354
  • DDC分類 516.362

基本説明

初版(1997年)が、全世界で36,000部以上というベストセラーテキスト。
Provides an introduction to the geometry of curves and surfaces. Emphasis is placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard.

Full Description

Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces.

The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard.

This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text.

Contents

Chapter 1: Calculus on Euclidean Space:
Euclidean Space. Tangent Vectors. Directional Derivatives. Curves in R3. 1-forms. Differential Forms. Mappings.

Chapter 2: Frame Fields:
Dot Product. Curves. The Frenet Formulas. ArbitrarySpeed Curves. Covariant Derivatives. Frame Fields. Connection Forms. The Structural Equations.

Chapter 3: Euclidean Geometry:
Isometries of R3. The Tangent Map of an Isometry. Orientation. Euclidean Geometry. Congruence of Curves.

Chapter 4: Calculus on a Surface:
Surfaces in R3. Patch Computations. Differentiable Functions and Tangent Vectors. Differential Forms on a Surface. Mappings of Surfaces. Integration of Forms. Topological Properties. Manifolds.

Chapter 5: Shape Operators:
The Shape Operator of M R3. Normal Curvature. Gaussian Curvature. Computational Techniques. The Implicit Case. Special Curves in a Surface. Surfaces of Revolution.

Chapter 6: Geometry of Surfaces in R3:
The Fundamental Equations. Form Computations. Some Global Theorems. Isometries and Local Isometries. Intrinsic Geometry of Surfaces in R3. Orthogonal Coordinates. Integration and Orientation. Total Curvature. Congruence of Surfaces.

Chapter 7: Riemannian Geometry: Geometric Surfaces. Gaussian Curvature. Covariant Derivative. Geodesics. Clairaut Parametrizations. The Gauss-Bonnet Theorem. Applications of Gauss-Bonnet.

Chapter 8: Global Structures of Surfaces: Length-Minimizing Properties of Geodesics. Complete Surfaces. Curvature and Conjugate Points. Covering Surfaces. Mappings that Preserve Inner Products. Surfaces of Constant Curvature. Theorems of Bonnet and Hadamard.

最近チェックした商品