Transport Phenomena in Porous Media 〈3〉

個数:
電子版価格
¥32,500
  • 電子版あり

Transport Phenomena in Porous Media 〈3〉

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 476 p.
  • 言語 ENG
  • 商品コード 9780080444901
  • DDC分類 620.116

Full Description


Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.

Contents

Contents1 The Double-Decomposition Concept for Turbulent Transport in Porous Media 1.1 Introduction 1.2 Instantaneous Local Transport Equations 1.3 Time- and Volume-Averaging Procedures 1.4 Time-Averaged Transport Equations 1.5 The Double-Decomposition Concept 1.5.1 Basic Relationships 1.6 Turbulent Transport 1.6.1 Momentum Equation 1.7 Heat Transfer 1.7.1 Governing Equations 1.7.2 Turbulent Thermal Dispersion 1.7.3 Local Thermal Equilibrium Hypothesis1.7.4 Macroscopic Buoyancy Effects1.8 Mass Transfer1.8.1 Mean and Turbulent Fields1.8.2 Turbulent Mass Dispersion1.9 Concluding RemarksReferences2 Heat Transfer in Bidisperse Porous Media 2.1 Introduction2.2 Determination of Transport Properties2.3 Two-Phase Flow and Boiling Heat Transfer 2.4 Dispersion 2.5 Two-Velocity Model 2.6 Two-Temperature Model 2.7 Forced Convection in A Channel Between Plane Parallel Walls2.7.1 Uniform Temperature Boundaries: Theory2.7.2 Uniform Flux Boundaries: Theory2.7.3 Uniform Temperature Boundaries: Results2.7.4 Uniform Flux Boundaries: Results 2.7.5 Conjugate Problem 2.7.6 Thermal Development 2.8 Conclusions References3 From Continuum To Porous-Continuum: The Visual Resolution Impact On Modeling Natural Convection in Heterogeneous Media 3.1 Introduction 3.2 Horizontal Heating 3.2.1 Continuum Equations3.2.2 Porous-Continuum Equations3.2.3 Heat Transfer Comparison Parameters 3.2.4 Results 3.2.5 Internal Structure Effect3.3 Heat-Generating Blocks 3.3.1 Mathematical Modeling 3.3.2 Heat Transfer Comparison Parameters3.3.3 Results3.4 Conclusion References 4 in Integral Transforms for Natural Convection in Cavities Filled With Porous Media 4.1 Introduction 4.2 Two-Dimensional Problem 4.3 Three-Dimensional Problem 4.4 Results and Discussion 4.5 Conclusions References 5 A Porous Medium Approach for The Thermal Analysis of Heat Transfer Devices 5.1 Introduction 5.2 Thermal Analysis of Microchannel Heat Sinks 5.2.1 High-Aspect-Ratio Microchannels 5.2.2 Low-Aspect-Ratio Microchannels 5.3 Thermal Analysis of Internally Finned Tubes 5.3.1 Mathematical Formulation and theoretical Solutions 5.3.2 Velocity and Temperature Distributions 5.3.3 Optimizationof thermal Performance 5.3.4 Comments On The Averaging Direction 5.4 Conclusions References 6 Local Thermal Non-Equilibrium in Porous Medium Convection 6.1 Introduction 6.2 Governing Equations 6.3 Conditions for the Validity of LTE6.4 Free Convection Boundary Layers 6.4.1 General Formulation 6.4.2 Results for Stagnation Point Flow 6.4.3 Results for A Vertical Flat Plate 6.4.4 General Comments 6.5 Forced Convection Past A Hot Circular Cylinder 6.6 Stability of Free Convection 6.7 Conclusions References 7 Three-Dimensional Numerical Models for Periodically Fully-Developed Heat and Fluid Flows Within Porous Media 7.1 Introduction 7.2 Three-Dimensional Numerical Model for Isotropic Porous Media 7.2.1 Numerical Model 7.2.2 Governing Equations and Periodic Boundary Conditions 7.2.3 Method of Computation 7.2.4 Macroscopic Pressure Gradient and Permeability 7.3 Quasi-Three-Dimensional Numerical Model for Anisotropic Porous Media 7.3.1 Periodic Thermal Boundary Conditions 7.3.2 Quasi-Three-Dimensional Solution Procedure for Anisotropic Arrays of Infinitely Long Cylinders 7.3.3 Effect of Cross Flow Angle On the Euler and Nusselt Numbers 7.3.4 Effect of Yaw Angle On the Euler and Nusselt Numbers 7.4 Large Eddy Simulation of Turbulent Flow in Porous Media 7.4.1 Large Eddy Simulation and Numerical Model 7.4.2 Velocity Fluctuations and Turbulent Kinetic Energy 7.4.3 Macroscopic Pressure Gradient in Turbulent Flow 7.5 Conclusions References 8 Entropy Generation in Porous Media 8.1 Introduction8.2 A Short History of the Second Law of thermodynamics 8.3 Governing Equations 8.3.1 Continuity Equation 8.3.2 Momentum Balance Equation 8.3.3 Energy Equation 8.3.4 Entropy Generation 8.4 Entropy Generation in A Porous Cavity and Channel 8.4.1 Entropy Generation in A Porous Cavity8.4.2 Entropy Generation in A Porous Channel 8.5 Conclusions References 9 Thermodiffusion in Porous Media 9.1 Introduction 9.2 Literature Review 9.2.1 Measurement Techniques of the Soret Coefficient 9.2.2 Mathematical and Numerical Techniques 9.3 Fundamental Equations of thermodiffusion 9.3.1 Haase Model 9.3.2 Kempers Model 9.3.3 Firoozabadi Model 9.4 Fundamental Equations in Porous Media 9.5 Numerical Solution Technique 9.6 Mesh Sensitivity Analysis 9.7 Results and Discussion 9.7.1 Comparison of Molecular and thermodiffusion Coefficients for Water Alcohol Mixtures 9.7.2 Calculation of Molecular and thermodiffusion Coefficients for Hydrocarbon Mixtures 9.7.3 Convection in A Square Cavity 9.7.4 Convection in A Rectangular Cavity 9.8 Conclusions References 10 Effect of Vibration On The Onset of Double-Diffusive Convection in Porous Media 10.1 Introduction 10.2 Mathematical Formulation 10.2.1 Direct Formulation 10.2.2 Time-Averaged Formulation 10.2.3 Scale Analysis Method 10.2.4 Time-Averaged System of Equations10.3 Linear Stability Analysis 10.3.1 Infinite Horizontal Porous Layer 10.3.2 Limiting Case of the Long-Wave Mode 10.3.3 Convective Instability Under Static Gravity (No Vibration) 10.4 Comparison of the Results With Fluid Media 10.5 Numerical Method 10.5.1 Vertical Vibration 10.5.2 Horizontal Vibration 10.6 The Onset of thermo-Solutal Convection Under The Influence of Vibration Without Soret Effect 10.6.1 Linear Stability Analysis 10.7 Conclusions References 11 Combustion in Porous Media: Fundamentals and Applications 11.1 Introduction 11.2 Previous Works 11.3 Characteristics of Combustion in Porous Media 11.4 Applications 11.5 Porous Burners11.6 Mathematical Modeling 11.7 Results and Discussion 11.8 Radial Burner 11.9 Conclusions 11.10 Possible Future Work References 12 Reactive Transport in Porous Media-Concepts and Numerical Approaches 12.1 Introduction 12.2 Quantitative Geochemistry 12.3 Analytical Description of Reactive Transport 12.4 Examples 12.4.1 Equilibrium Example 1 12.4.2 Equilibrium Example 2 12.4.3 Equilibrium and Kinetics Example 1 12.4.4 Equilibrium and Kinetics Example 2 12.5 Numerical Approaches 12.5.1 Speciation Calculations 12.5.2 Transport Modeling 12.5.3 Transport and Reaction Coupling 12.6 Numerical Errors 12.7 Implementation in Matlab 12.8 Example Models 12.8.1 Three-Species Model 12.8.2 Calcite Dissolution Test Case (ID) 12.8.3 Two-Dimensional Modeling 12.9 Conclusions References 13 Numerical and Analytical Analysis of the Thermosolutal Convection in An Annular Field: Effect of thermodiffusion 13.1 Introduction 13.2 Mathematical Model 13.2.1 Numerical Solution 13.3 Analytical Solution 13.4 Results and Discussion 13.5 Conclusions References 14 Pore-Scale Transport Phenomena in Porous Media 14.1 Introduction 14.2 Conjugated Transport Phenomena With Pore Structure 14.2.1 Conjugated Phenomena in Sludge Drying 14.2.2 Effect of Inner Evaporation On The Pore Structure 14.3 Transport-Reaction Phenomena 14.3.1 Reaction in A Porous Solid 14.3.2 Experimental Investigation 14.4 Boiling and Interfacial Transport 14.4.1 Experimental Observations 14.4.2 Static Description of Primary Bubble Interface 14.4.3 Replenishment and Dynamic Behavior of the Interface 14.4.4 Interfacial Heat and Mass Transfer At Pore Level 14.5 Freezing and Thawing 14.5.1 Experimental Facility 14.5.2 Sludge Agglomerates During Freezing 14.5.3 Botanical Tissues During Freezing 14.6 Two-Phase Flow Behavior 14.6.1 Experimental Observation 14.6.2 Critical Diameter 14.6.3 Transport of Small Bubbles 14.6.4 Transport of Big Bubbles 14.7 Conclusion References 15 Dynamic Solidification in A Water-Saturated Porous Medium Cooled From Above 15.1 Introduction 15.2 Mathematical Formulation 15.2.1 Two-Dimensional Model 15.2.2 A Reduced One-Dimensional Model 15.3 Numerical Results 15.3.1 Development of A Solid Layer and Convecting Flow 15.3.2 Amplitude and Phase Lag of the Oscillating Solid-Liquid Interface 15.4 Experimental Results 15.4.1 Experimental Apparatus and Procedure 15.4.2 Ice-Layer Thickness At Steady State 15.4.3 Average Nusselt Number and Vertical Temperature Variation At Steady State 15.4.4 Oscillating Cooling Temperature and the Response of Ice-Layer 15.4.5 Amplitude and Phase Lag Against Oscillating Cooling Temperature 15.5 Conclusion References 16 Application of Fluid Flows Through Porous Media in Fuel Cells 16.1 Introduction 16.2 Operation Principles of Fuel Cells 16.3 Governing Equations for The Fluid Flows in Porous Electrodes 16.3.1 Equations for The Fluid Flow and Mass Transfer in Fuel Cells 16.3.2 Heat Generation and Transfer in Fuel Cells 16.3.3 The Electric Field in Fuel Cells 16.4 Multicomponent Gas Transport in Porous Electrodes 16.4.1 Convective Transport 16.4.2 Diffusive Transport 16.5 CFD Model Predictions of Fuel Cells 16.6 Concluding Remarks References 17 Modeling The Effects of Faults and Fractures On Fluid Flow in Petroleum Reservoirs 17.1 Introduction 17.2 Single and Multiphase Flow 17.3 Modeling Flow in Petroleum Reservoirs Where Faults Act As Barriers 17.3.1 Numerical Modeling of the Permeability of Fault Rocks 17.3.2 Modeling Flow in Complex Damage Zones17.3.3 Incorporation of Fault Properties Into Production Simulation Models 17.3.4 Knowledge Gaps and Future Directions 17.4 Modeling Flow in Reservoirs Where Faults and Fractures Act As Conduits 17.4.1 Overview of Existing Discrete Fracture Models 17.4.2 Technical Description of the Methodology 17.4.3 An Example of Flow Simulation in A Fractured Reservoir 17.5 Discussion and Conclusions References

最近チェックした商品