Compass Data Science<br> JAX/Flaxで学ぶディープラーニングの仕組み―新しいライブラリーと畳み込みニューラルネットワークを徹底理解

個数:
電子版価格
¥3,179
  • 電子版あり

Compass Data Science
JAX/Flaxで学ぶディープラーニングの仕組み―新しいライブラリーと畳み込みニューラルネットワークを徹底理解

  • ウェブストアに1冊在庫がございます。(2025年05月24日 17時45分現在)
    通常、ご注文翌日~2日後に出荷されます。
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【ご注意事項】 ※必ずお読みください
    ◆在庫数は刻々と変動しており、ご注文手続き中に減ることもございます。
    ◆在庫数以上の数量をご注文の場合には、超過した分はお取り寄せとなり日数がかかります。入手できないこともございます。
    ◆事情により出荷が遅れる場合がございます。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ B5変判/ページ数 352p/高さ 24cm
  • 商品コード 9784839982324
  • NDC分類 007.1
  • Cコード C3055

出版社内容情報

●JAX/Flax/Optaxの特徴

JAXとFlax、およびOptaxは、米Google社のAI研究チームと米DeepMind社のエンジニアが中心となって開発しているオープンソースソフトウェアです。Googleが開発したディープラーニングのライブラリーといえばTensorFlow/Kerasが有名ですが、最近は、JAXとその周辺ライブラリーにも注目が集まっています。

JAXは、機械学習で必要となる数値計算処理をPythonのコードから高速に実行するためのライブラリーです。表面的にはNumPyとほぼ同じ使い方ができて、GPUでの実行に対応しています。

TensorFlow/KerasとJAX/Flax/Optaxを比べると、後者では裏側の仕組みが適度なレベルで見えているという点が異なります。

TensorFlow/Kerasの場合、機械学習の「定型作業」を実施する上では簡単なコードで良いものの、応用的な作業を行おうとするとTensorFlow/Kearsに固有の機能を用いた特殊なコードを書く必要があります。一方、JAX/Flax/Optaxの場合は、定型作業にもある程度のコーディングが必要な一方で、応用的な作業も通常のPythonプログラミングの感覚で行えます。応用的な作業が中心となる、研究・開発目的での利用に適したライブラリーと言えます。


● 本書の概要

本書では、ディープラーニングの代表例とも言える畳み込みニューラルネットワーク(CNN)を例として、これをJAX/Flax/Optaxで実装しながら、モデルの各パーツの役割を数式レベルで丁寧に解説していきます。

この際、モデル内部の処理の様子を確認するために、モデルの中身を分析するコードもあわせて利用します。JAX/Flax/Optaxを利用すれば、モデルの構築だけでなく、このような分析作業も簡単に実施できることが実感できるでしょう。

導入となる第1章では、JAX/Flax/Optaxの基本的な機能とその使い方を学ぶために、機械学習の基礎とも言える「最小二乗法」による回帰問題を利用します。まずは、JAXの機能だけを利用して、勾配降下法のアルゴリズムを独自に実装して、回帰モデルの学習を行います。その後、これと同等の処理をFlax/Optaxを組み合わせて、再度、実装してみます。これにより、Flax/Optaxの使い方に加えて、JAXの微分機能など、その背後で行われる実際の処理内容をより明確に理解することができるでしょう。

第2章以降では、より本格的な畳み込みニューラルネットワークを構築し、さらに、転移学習やDCGANによる画像生成モデルなども実装します。付録として、本書で使用するJAX/Flax/Optaxの主な関数の一覧も用意。JAX/Flax/Optaxの使い方をリファレンス的に知っておきたい方にもおすすめです。

内容説明

JAX“GPUを使った数値計算”+Flax“ニューラルネットワークの構築”。Google製の新しいライブラリーで応用が効く機械学習モデルを構築しよう!「畳み込みニューラルネットワーク」(CNN)の仕組みをしっかり理解できる。JAX/Flax/Optaxでの機械学習モデル構築が基本から応用まで学べる。転移学習、アノマリー検知、DCGANによる画像生成モデル構築も紹介。

目次

JAX/Flax/Optax入門(最小二乗法で学ぶ機械学習の基類;JAX/Flax/Optaxの基本的な使い方 ほか)
2 分散アルゴリズムの基礎(ロジスティック回帰による二項分類器;ソフトマックス関数と多項分類器 ほか)
3 ニューラルネットワークを用いた分類処理(単層ニューラルネットワークの構造;単層ニューラルネットワークによる手書き文字の分類 ほか)
4 畳み込みフィルターによる画像の特徴抽出(畳み込みフィルターの機能;畳み込みフィルターを用いた画像の分類 ほか)
5 畳み込みフィルターの多層化による性能向上(畳み込みニューラルネットワークの完成;学習済みフィルターの解釈 ほか)

著者等紹介

中井悦司[ナカイエツジ]
1971年4月大阪生まれ。ノーベル物理学賞を本気で夢見て、理論物理学の研究に没頭する学生時代、大学受験教育に情熱を傾ける予備校講師の頃、そして、華麗なる(?)転身を果たして、外資系ベンダーでLinuxエンジニアを生業にするに至るまで、妙な縁が続いて、常にUnix/Linuxサーバーと人生を共にする。その後、Linuxディストリビューターのエバンジェリストを経て、現在は、米系IT企業のSolutions Architectとして活動。最近は、機械学習をはじめとするデータ活用技術の基礎を世に広めるために、講演活動のほか、雑誌記事や書籍の執筆にも注力(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

最近チェックした商品