本質から理解する数学的手法

個数:
電子版価格 ¥2,484
  • 電書あり

本質から理解する数学的手法

  • ウェブストアに9冊在庫がございます。(2019年06月21日 02時11分現在)
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【出荷予定日】
    ■ご注文当日 (午前0時~午前10時30分までのご注文)
     または
    ■ご注文翌日 (午前10時31分~午後11時59分までのご注文)

    【ご注意事項】 ※必ずお読みください
    ◆在庫数は刻々と変動しており、ご注文手続き中に減ることもございます。
    ◆在庫数以上の数量をご注文の場合には、超過した分はお取り寄せとなり日数がかかります。入手できないこともございます。
    ◆事情により出荷が遅れる場合がございます。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆特に表記のない限り特典はありません。
  • ●店舗受取サービス(送料無料)をご利用いただけます。
    【カートに入れる】を選択後に全国店舗の中からお受け取り店をご指定下さい。詳細はこちら
  • サイズ A5判/ページ数 200p/高さ 22cm
  • 商品コード 9784785315702
  • NDC分類 410
  • Cコード C3041

内容説明

話の流れを重視した「読み物」風のスタイル。第1章で、数学を学ぶ上での基本原則・前提知識・約束事など、各章に入りきらない共通概念や知っておいてほしい事項を解説。各章のテーマを学ぶ意義・目的を章の冒頭で明らかにし、結論を先に述べてから詳細な解説に入る構成。直感に訴えるような図や絵をなるべく多く示して解説。

目次

第1章 基本の「き」
第2章 テイラー展開
第3章 多変数・ベクトル関数の微分
第4章 線積分・面積分・体積積分
第5章 ベクトル場の発散と回転
第6章 フーリエ級数・変換とラプラス変換
第7章 微分方程式
第8章 行列と線形代数
第9章 群論の初歩

著者等紹介

荒木修[アラキオサム]
1961年長崎県生まれ。東京大学工学部計数工学科卒。ボストン大学大学院修士課程修了。東京大学大学院工学系研究科計数工学専攻博士課程修了。松下電器産業(株)、北陸先端科学技術大学院大学助手、東京理科大学理学部講師・准教授を経て、同学部教授。博士(工学)。研究分野は認知神経科学

齋藤智彦[サイトウトモヒコ]
1966年神奈川県生まれ。東京大学理学部物理学科卒。東京大学大学院理学系研究科物理学専攻博士課程修了。コロラド大学ボールダー校博士研究員、高エネルギー加速器研究機構・物質構造科学研究所助手、東京理科大学理学部講師・准教授を経て、同学部教授。博士(理学)。研究分野は固体物理学(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

出版社内容情報

「この数学を学ぶことにどんな意味があるのか」「何が重要か」「本質は何か」「何の役に立つのか」を考えるためのヒントや解答を記す 本書は、「数学は得意ではないけれども、嫌いではない。だから何とか根本から理解したい」という大学理工系諸学科の学生(後輩諸君)のために、同じく学生時代に数学で悩んだ2人の著者が、(先輩)数学ユーザーの立場から執筆した。
 大学理工系の初学年で学ぶ基礎数学について、「この数学を学ぶことにどんな意味があるのか」「何が重要か」「本質は何か」「何の役に立つのか」という問題意識を常に持って考えるためのヒントや解答を記した。話の流れを重視した「読み物」風のスタイルで、直感に訴えるような図や絵をなるべく多く示して解説する。
 苦手とする数学的手法について、「なるほど!そういうことか!」と一人でも多くの読者が納得していただければ幸いである。

1.基本の「き」
 1.1 数学以前の話
 1.2 「定義」と「性質」について
 1.3 対称性について
 1.4 連続と直線近似 ?微分積分の基本コンセプト?
 1.5 関数・場・演算子・写像
 1.6 次元の数
 1.7 ベクトルと成分表示
 1.8 i は幻?
 1.9 平面角と立体角

2.テイラー展開
 2.1 テイラー展開とは?
 2.2 関数を簡単化するツール
 2.3 関数をべき関数の和で表す
 2.4 テイラー展開が満たすべき条件とは?
 2.5 使える! 近似計算
 2.6 テイラー展開の活用例

3.多変数・ベクトル関数の微分
 3.1 微分とは?
 3.2 ベクトル関数の微分
 3.3 多変数関数の微分
 3.4 多変数ベクトル関数の微分
 3.5 多変数関数におけるチェインルール

4.線積分・面積分・体積積分
 4.1 積分とは?
 4.2 線積分
 4.3 スカラー関数の面積分
 4.4 流量とベクトル関数の面積分
 4.5 体積積分

5.ベクトル場の発散と回転
 5.1 ベクトル場の発散と回転を考える理由
 5.2 発散(divergence) ?ベクトルの伸び?
 5.3 回転(rotation) ?ベクトルのずれ?
 5.4 ガウスの定理とストークスの定理 ?1次元ずらす技術?

6.フーリエ級数・変換とラプラス変換
 6.1 フーリエ級数・フーリエ変換とは?
 6.2 限定範囲を三角関数の和で表現する
 6.3 周期関数を三角関数の和で表現する
 6.4 フーリエ変換とフーリエ逆変換
 6.5 矩形波のフーリエ変換
 6.6 フーリエ変換の3つの重要な性質
 6.7 いろいろな関数のフーリエ変換
 6.8 たたみ込み積分
 6.9 フーリエ変換とラプラス変換の違い
 6.10 ラプラス変換とは?
 6.11 ラプラス変換を用いた微分方程式の解き方

7.微分方程式
 7.1 定係数線形微分方程式とは?
 7.2 変化分を知れば未来がわかる
 7.3 変数値の変化をベクトル場における移動ととらえる
 7.4 ベクトル場と解との関係
 7.5 線形微分方程式の行列表現
 7.6 固有値によって解のタイプがわかる
 7.7 解のタイプをイメージで理解する

8.行列と線形代数
 8.1 線形空間についての基礎知識
 8.2 行列の計算ルール
 8.3 行列の固有値と固有ベクトル
 8.4 行列の対角化と基底の変換

9.群論の初歩
 9.1 群とは
 9.2 群についての基礎知識
 9.3 重要な群の例
 9.4 群の行列表現
 9.5 群の応用例

荒木 修[アラキ オサム]
著・文・その他

齋藤 智彦[サイトウ トモヒコ]
著・文・その他