内容説明
近年、多項式方程式を扱う斬新なアルゴリズムの発見は、安価ながら高速なコンピューターの急激な普及と相まって、代数幾何の研究と実践にささやかな革命を巻き起こした。アルゴリズム的方法と技巧は代数幾何が応用される範囲を飛躍的に拡大し、魅惑的な応用が次々と誕生した。本著の基盤を成す話題は、グレブナー基底の基礎(アルゴリズム、方程式を解くこと)、終結式の理論(終結式、多面体、混合体積、トーリック多様体)、可換代数(シチジー、自由分解、ヒルベルト函数)、応用数学(整数計画、多項式スプライン、代数的符号理論)であって、読者は代数幾何の多面的な効用が眺望できるとともに、グレブナー基底と終結式の応用を巡る新しい潮流を実感できる。本文を補うための600題を越す練習問題が掲載され、やや難しいと思われる問題には丁寧なヒントも添付されている。グレブナー基底に興味を持つ理工系の研究者、教育者、大学院生にとって不可欠な名著の邦訳である。
目次
第6章 自由分解(加群の表現と分解;ヒルベルトのシチジー定理;時数付分解;ヒルベルト多項式と幾何学的応用)
第7章 多面体、終結式、方程式(多面体の幾何;疎終結式;トーリック多様体;ミンコフスキー和と混合体積;ベルンシュタインの定理;終結式の計算と方程式の求解)
第8章 整数計画、組合せ論、スプライン(整数計画;整数計画と組合せ論;多変数スプライン)
第9章 代数的符号理論(有限体;誤り訂正符号;巡回符号;リード・ソロモンの復号アルゴリズム;代数幾何からの符号)
著者等紹介
大杉英史[オオスギヒデフミ]
1996年大阪大学理学部数学科卒業。大阪大学大学院理学研究科博士課程。専門分野:計算幾何と可換代数
北村知徳[キタムラトモノリ]
1999年大阪大学理学部数学科卒業。大阪大学大学院理学研究科修士課程。専門分野:応用代数
日比孝之[ヒビタカユキ]
1981年名古屋大学理学部数学科卒業。1991年北海道大学理学部助教授。大阪大学大学院理学研究科教授・理学博士。専門分野:組合せ論(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。