パターン認識と機械学習〈上〉ベイズ理論による統計的予測

  • ただいまウェブストアではご注文を受け付けておりません。
  • サイズ B5判/ページ数 349p/高さ 24cm
  • 商品コード 9784431100133
  • NDC分類 007.1

内容説明

ベイズ理論に基づく統計的予測技術は、計算アルゴリズムの開発と計算機の性能向上により、近年、急速に進展してきた。本書は、このベイズ理論に基づいた統一的な視点から、機械学習とパターン認識の様々な理論や手法を解説した教科書である。上巻では、下巻で扱う比較的高度な話題を理解するための基礎的事項を学ぶことに重点を置いている。まず、機械学習・パターン認識の根底にある決定理論から始め、ベイズ理論の観点から確率の基礎と様々な確率分布を取り上げる。そして代表的な学習問題である回帰と識別問題をベイズ的な観点から解き明かした後、ニューラルネットワークと共に、学習問題を解くときに必要になる最適化手法を紹介する。

目次

第1章 序論
第2章 確率分布
第3章 線形回帰モデル
第4章 線形識別モデル
第5章 ニューラルネットワーク
付録

著者紹介

ビショップ,C.M.[ビショップ,C.M.][Bishop,Christopher M.]
1983年、エディンバラ大学でD.ウォレス、P.ヒッグズの指導の下、量子場に関する論文で博士号を取得。現在、英国マイクロソフト研究所Deputy Director。研究テーマは、機械学習への確率論的なアプローチとその応用

元田浩[モトダヒロシ]
大阪大学名誉教授。工学博士

栗田多喜夫[クリタタキオ]
独立行政法人産業技術総合研究所脳神経情報研究部門副研究部門長。博士(工学)

樋口知之[ヒグチトモユキ]
システム研究機構統計数理研究所教授(副所長)。理学博士

松本裕治[マツモトユウジ]
奈良先端科学技術大学院大学情報科学研究科教授。工学博士(本データはこの書籍が刊行された当時に掲載されていたものです)