機械学習のためのプライバシー保護

個数:
  • 予約
  • ポイントキャンペーン

機械学習のためのプライバシー保護

  • J. Morris Chang/Di Zhuang
  • 価格 ¥5,170(本体¥4,700)
  • 共立出版(2025/06/25発売)
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 94pt
  • ご予約受付中
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【出荷予定日】
    ◆通常、発売日にウェブストアから出荷となります。
    ◆指定発売日のある商品は発売前日にウェブストアから出荷となります。
    ◆一部商品(取り寄せ扱い)は発送までに日数がかかります。

    【ご注意事項】 ※必ずお読みください
    ◆表示の発売日や価格は変更になる場合がございます。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
    ◆ご予約品は別途配送となります。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ B5変判
  • 商品コード 9784320125872
  • Cコード C3004

出版社内容情報

本書『プライバシー保護機械学習』は、プライバシーに配慮しながら機械学習に取り組むための実践的なガイドブックです。
機械学習が社会実装されていく中で、さまざまな人々のパーソナルデータの活用には大きな期待が寄せられています。一方、パーソナルデータには他人に知られたくないセンシティブな情報が含まれることもあり、プライバシーへの配慮が求められています。プライバシー保護機械学習 (PPML) は、データのプライバシー保護と、機械学習モデルの有用性、の両立を図る研究領域であり、2010年代以降、北米を中心として社会実装が進められてきました。
本書では、PPMLの基礎知識から応用まで、幅広く取り扱います。近年の中心的技術である差分プライバシーをはじめとして、圧縮プライバシーやk-匿名化などの古典的なプライバシー保護技術についても解説します。また、これらのプライバシー保護技術の機械学習への統合に関して、ロジスティック回帰などの基礎的なもの、合成データの生成方法、データプラットフォームの構築方法といった実践的なユースケースを交えて紹介します。
本書の特長は、PPMLの基本的・実践的な手法をコード例 (Python) とともに学べる点です。そのため、プライバシーをどう保護するかの実践的スキルをステップバイステップで身につけることができます。先端的な研究に興味のある方だけでなく、産業界での適用に興味のある機械学習エンジニアやソフトウェア開発者にも有益な内容となっています。

[原著]Privacy-Preserving Machine Learning, Manning Publications, 2023

最近チェックした商品