ディープラーニングと物理学―原理がわかる、応用ができる

個数:
電子版価格
¥3,520
  • 電子版あり

ディープラーニングと物理学―原理がわかる、応用ができる

  • ウェブストアに2冊在庫がございます。(2026年01月14日 19時52分現在)
    通常、ご注文翌日~2日後に出荷されます。
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【ご注意事項】 ※必ずお読みください
    ◆在庫数は刻々と変動しており、ご注文手続き中に減ることもございます。
    ◆在庫数以上の数量をご注文の場合には、超過した分はお取り寄せとなり日数がかかります。入手できないこともございます。
    ◆事情により出荷が遅れる場合がございます。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ A5判/ページ数 300p/高さ 21cm
  • 商品コード 9784065162620
  • NDC分類 007.1
  • Cコード C3041

出版社内容情報

人工知能技術の中枢をなす深層学習と物理学との繋がりを俯瞰する。物理学者ならではの視点で原理から応用までを説く、空前の入門書。

内容説明

物理学者ならではの視点で原理から応用までを説く、空前の入門書。物理は機械学習に役立つ!機械学習は物理に役立つ!

目次

はじめに:機械学習と物理学
第1部 物理から見るディープラーニングの原理(機械学習の一般論;ニューラルネットワークの基礎;発展的なニューラルネットワーク;サンプリングの必要性と原理;教師なし深層学習)
第2部 物理学への応用と展開(物理学における逆問題;相転移をディープラーニングで見いだせるか;力学系とニューラルネットワーク;スピングラスとニューラルネットワーク;量子多体系、テンソルネットワークとニューラルネットワーク;超弦理論への応用;おわりに)

著者等紹介

田中章詞[タナカアキノリ]
博士(理学)。2014年大阪大学大学院理学研究科物理学専攻博士後期課程修了。現在、理化学研究所特別研究員(革新知能統合研究センター/数理創造プログラム)

富谷昭夫[トミヤアキオ]
博士(理学)。2014年大阪大学大学院理学研究科物理学専攻博士後期課程修了。現在、理化学研究所基礎科学特別研究員(理研BNL研究センター計算物理研究グループ)

橋本幸士[ハシモトコウジ]
理学博士。2000年京都大学大学院理学研究科博士課程修了。現在、大阪大学大学院理学研究科教授(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

最近チェックした商品