出版社内容情報
「基礎から始め、その仕組みを理論的に明快に説明したのは本書が初めてといってよい」と甘利俊一先生が大推薦!機械学習の予備知識がない読者を、研究の最前線までしっかり連れて行く、ひとりでも学べる入門書!
深層学習の理論を初めて学ぶ人はもちろん、今度こそ理解したい人のために。
【甘利俊一先生推薦】
「世の中に人工知能の解説書は多いが、基礎から始め、その仕組みを理論的に明快に説明したのは本書が初めてといってよい」
【主な内容】
1 はじめに
2 機械学習と深層学習
3 ニューラルネット
4 勾配降下法による学習
5 深層学習の正則化
6 誤差逆伝播法
7 自己符号化器
8 畳み込みニューラルネット
9 再帰型ニューラルネット
10 ボルツマンマシン
11 深層強化学習
【機械学習スタートアップシリーズ】
本シリーズは、「機械学習ブーム」の先駆けとして2015年から刊行されている『機械学習プロフェッショナルシリーズ』の弟分的な存在を目指す、注目の新シリーズです。
「機械学習をもっと身近に、機械学習をもっとわかりやすく!」を合言葉に、より丁寧な記述で、基本的なテーマを解説していきます。
まず、以下の2点を同時に刊行いたします(^o^)/
『これならわかる深層学習入門』瀧 雅人・著
『ベイズ推論による機械学習入門』須山 敦志・著/杉山 将・監修
1章 はじめに
2章 機械学習と深層学習
なぜ深層学習か?/機械学習とは何か/統計入門/機械学習の基礎/表現学習と深層学習の進展
3章 ニューラルネット
神経細胞のネットワーク/形式ニューロン/パーセプトロン/順伝播型ニューラルネットワークの構造/ニューラルネットによる機械学習/活性化関数/なぜ深層とすることが重要なのか
4章 勾配降下法による学習
勾配降下法/改良された勾配降下法/重みパラメータの初期値の取り方/訓練サンプルの前処理/
5章 深層学習の正則化
汎化性能と正則化/重み減衰/早期終了/重み共有/データ拡張とノイズの付加/バギング/ドロップアウト/深層表現のスパース化/バッチ正規化
6章 誤差逆伝播法
パーセプトロンの学習則とデルタ則/誤差逆伝播法/誤差逆伝播法はなぜ早いのか/勾配消失問題,パラメータ爆発とその対応策
7章 自己符号化器
データ圧縮と主成分分析/自己符号化器/スパース自己符号化器/積層自己符号化器と事前学習/デノイジング自己符号化器/収縮自己符号化器
8章 畳み込みニューラルネット
一次視覚野と畳み込み/畳み込みニューラルネット/CNN の誤差逆伝播法/学習済みモデルと転移学習/CNN はどのようなパターンを捉えているのか/脱畳み込みネットワーク/インセプションモジュール
9章 再帰型ニューラルネット
時系列データ/再帰型ニューラルネット/機械翻訳への応用/RNN の問題点/長・短期記憶/再帰型ニューラルネットと自然言語処理
10章 ボルツマンマシン
グラフィカルモデルと確率推論/ボルツマンマシン/ボルツマンマシンの学習と計算量爆発/ギブスサンプリングとボルツマンマシン/平均場近似/制限付きボルツマンマシン/コントラスティブダイバージェンス法とその理論/ディープビリーフネットワーク/ディープボルツマンマシン
11章 深層強化学習
強化学習/関数近似と深層 Q ネット/アタリゲームと DQN/方策学習/アルファ碁
付録 確率の基礎/変分法
瀧 雅人[タキ マサト]
著・文・その他
目次
機械学習と深層学習
ニューラルネット
勾配降下法による学習
深層学習の正則化
誤差逆伝播法
自己符号化器
畳み込みニューラルネット
再帰型ニューラルネット
ボルツマンマシン
深層強化学習
確率の基礎
変分法
著者等紹介
瀧雅人[タキマサト]
博士(理学)。2009年東京大学大学院理学系研究科物理学専攻博士後期課程修了。理化学研究所数理創造プログラム(iTHEMS)上級研究員(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
感想・レビュー
※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。
nbhd
suzuki
shin_ash
YUJIRO
K;Kei