The Art of the Intelligible : An Elementary Survey of Mathematics in Its Conceptual Development (Western Ontario Series in Philosophy of Science (Pape (Reprint)

個数:

The Art of the Intelligible : An Elementary Survey of Mathematics in Its Conceptual Development (Western Ontario Series in Philosophy of Science (Pape (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781402000072
  • DDC分類 500

Full Description

A compact survey, at the elementary level, of some of the most important concepts of mathematics. Attention is paid to their technical features, historical development and broader philosophical significance. Each of the various branches of mathematics is discussed separately, but their interdependence is emphasised throughout. Certain topics - such as Greek mathematics, abstract algebra, set theory, geometry and the philosophy of mathematics - are discussed in detail. Appendices outline from scratch the proofs of two of the most celebrated limitative results of mathematics: the insolubility of the problem of doubling the cube and trisecting an arbitrary angle, and the Gödel incompleteness theorems. Additional appendices contain brief accounts of smooth infinitesimal analysis - a new approach to the use of infinitesimals in the calculus - and of the philosophical thought of the great 20th century mathematician Hermann Weyl.
Readership: Students and teachers of mathematics, science and philosophy. The greater part of the book can be read and enjoyed by anyone possessing a good high school mathematics background.

Contents

Foreword. Acknowledgements. 1. Numerals and Notation. 2. The Mathematics of Ancient Greece. 3. The Development of the Number Concept. 4. The Evolution of Algebra, I. 5. The Evolution of Algebra, II. 6. The Evolution of Algebra, III. 7. The Development of Geometry, I. 8. The Development of Geometry, II. 9. The Calculus and Mathematical Analysis. 10. The Continuous and the Discrete. 11. The Mathematics of the Infinite. 12. The Philosophy of Mathematics. Appendices. Bibliography. Index of Names. Index of terms.