EMの力学的特性<br>Mechanical Properties of Engineered Materials (Mechanical Engineering)

個数:

EMの力学的特性
Mechanical Properties of Engineered Materials (Mechanical Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 製本 Hardcover:ハードカバー版/ページ数 608 p.
  • 言語 ENG
  • 商品コード 9780824789008
  • DDC分類 620.11292

基本説明

Highlights the latest in basic materials concepts, including the mechanics and physical basis of elasticity, plasticity, fracture, fatigue, viscoelasticity, creep, and time dependent fracture.

Table of Contents

Preface                                            iii
Overview of Crystal/Defect Structure and 10 (13)
Mechanical Properties and Behavior
Introduction 1 (1)
Atomic Structure 1 (1)
Chemical Bonds 2 (6)
Structure of Solids 8 (11)
Structural Length Scales: Nanostructure, 19 (1)
Microstructure, and Macrostructure
Summary 20 (3)
Bibliography 21 (2)
Defect Structure and Mechanical Properties 23 (36)
Introduction 23 (1)
Indicial Notation for Atomic Planes and 23 (5)
Directions
Defects 28 (5)
Thermal Vibrations and Microstructural 33 (18)
Evolution
Overview of Mechanical Behavior 51 (6)
Summary 57 (2)
Bibliography 57 (2)
Basic Definitions of Stress and Strain 59 (26)
Introduction 59 (1)
Basic Definitions of Stress 59 (5)
Basic Definitions of Strain 64 (6)
Mohr's Circle of Stress and Strain 70 (2)
Computation of Principal Stresses and 72 (3)
Principal Strains
Hydrostatic and Deviatoric Stress Components 75 (3)
Strain Measurement 78 (3)
Mechanical Testing 81 (3)
Summary 84 (1)
Bibliography 84 (1)
Introduction to Elastic Behavior 85 (27)
Introduction 85 (1)
Reasons for Elastic Behavior 86 (3)
Introduction to Linear Elasticity 89 (4)
Theory of Elasticity 93 (10)
Introduction to Tensor Notation 103(4)
Generalized Form of Linear Elasticity 107(2)
Strain Energy Density Function 109(1)
Summary 110(2)
Bibliography 111(1)
Introduction to Plasticity 112(29)
Introduction 112(1)
Physical Basis for Plasticity 113(8)
Elastic-Plastic Behavior 121(7)
Empirical Stress-Strain Relationships 128(3)
Considere Criterion 131(2)
Yielding Under Multiaxial Loading 133(3)
Introduction to J2 Deformation Theory 136(2)
Flow and Evolutionary Equations 138(1)
(Constitutive Equations of Plasticity)
Summary 139(2)
Bibliography 139(2)
Introduction to Dislocation Mechanics 141(36)
Introduction 141(1)
Theoretical Shear Strength of a Crystalline 142(2)
Solid
Types of Dislocations 144(4)
Movement of Dislocations 148(8)
Experimental Observations of Dislocations 156(1)
Stress Fields Around Dislocations 157(6)
Strain Energies 163(2)
Forces on Dislocations 165(4)
Forces Between Dislocations 169(4)
Forces Between Dislocations and Free 173(2)
Surfaces
Summary 175(2)
Bibliography 175(2)
Dislocations and Plastic Deformation 177(47)
Introduction 177(1)
Dislocation Motion in Crystals 178(3)
Dislocation Velocity 181(2)
Dislocation Interactions 183(4)
Dislocation Bowing Due to Line Tension 187(1)
Dislocation Multiplication 188(3)
Contributions from Dislocation Density to 191(2)
Macroscopic Strain
Crystal Structure and Dislocation Motion 193(9)
Critical Resolved Shear Stress and Slip in 202(4)
Single Crystals
Slip in Polycrystals 206(3)
Geometrically Necessary and Statistically 209(7)
Stored Dislocations
Dislocation Pile-Ups and Bauschinger Effect 216(2)
Mechanical Instabilities and 218(3)
Anomalous/Serrated Yielding
Summary 221(3)
Bibliography 221(3)
Dislocation Strengthening Mechanisms 224(24)
Introduction 224(1)
Dislocation Interactions with Obstacles 225(1)
Solid Solution Strengthening 226(3)
Dislocation Strengthening 229(2)
Grain Boundary Strengthening 231(3)
Precipitation Strengthening 234(10)
Dispersion Strengthening 244(1)
Overall Superposition 245(1)
Summary 246(2)
Bibliography 246(2)
Introduction to Composites 248(41)
Introduction 248(1)
Types of Composite Materials 249(8)
Rule-of-Mixture Theory 257(5)
Deformation Behavior of Unidirectional 262(3)
Composites
Matrix versus Composite Failure Modes in 265(2)
Unidirectional Composites
Failure of Off-Axis Composites 267(4)
Effects of Whisker/Fiber Length on 271(4)
Composite Strength and Modulus
Constituent and Composite Properties 275(7)
Statistical Variations in Composite Strength 282(5)
Summary 287(2)
Bibliography 287(2)
Further Topics in Composites 289(26)
Introduction 289(1)
Unidirectional Laminates 290(2)
Off-Axis Laminates 292(3)
Multiply Laminates 295(5)
Composite Ply Design 300(2)
Composite Failure Criteria 302(2)
Shear Lag Theory 304(4)
The Role of Interfaces 308(5)
Summary 313(2)
Bibliography 313(2)
Fundamentals of Fracture Mechanics 315(51)
Introduction 315(2)
Fundamentals of Fracture Mechanics 317(1)
Notch Concentration Factors 317(1)
Griffith Fracture Analysis 318(2)
Energy Release Rate and Compliance 320(4)
Linear Elastic Fracture Mechanics 324(18)
Elastic-Plastic Fracture Mechanics 342(9)
Fracture Initiation and Resistance 351(4)
Interfacial Fracture Mechanics 355(4)
Dynamic Fracture Mechanics 359(2)
Summary 361(5)
Bibliography 361(5)
Mechanisms of Fracture 366(48)
Introduction 366(1)
Fractographic Analysis 367(2)
Toughness and Fracture Process Zones 369(2)
Mechanisms of Fracture in Metals and Their 371(14)
Alloys
Fracture of Intermetallics 385(2)
Fracture of Ceramics 387(2)
Fracture of Polymers 389(4)
Fracture of Composites 393(3)
Quantitative Fractography 396(1)
Thermal Shock Response 397(13)
Summary 410(4)
Bibliography 411(3)
Toughening Mechanisms 414(42)
Introduction 414(2)
Toughening and Tensile Strength 416(2)
Review of Composite Materials 418(1)
Transformation Toughening 419(7)
Crack Bridging 426(10)
Crack-Tip Blunting 436(4)
Crack Deflection 440(2)
Twin Toughening 442(1)
Crack Trapping 443(2)
Microcrack Shielding/Antishielding 445(1)
Linear Superposition Concept 445(1)
Synergistic Toughening Concept 446(3)
Toughening of Polymers 449(2)
Summary and Concluding Remarks 451(5)
Bibliography 452(4)
Fatigue of Materials 456(55)
Introduction 456(4)
Micromechanisms of Fatigue Crack Initiation 460(2)
Micromechanisms of Fatigue Crack Propagation 462(5)
Conventional Approach to Fatigue 467(6)
Differential Approach to Fatigue 473(1)
Fatigue Crack Growth in Ductile Solids 474(3)
Fatigue of Polymers 477(3)
Fatigue of Brittle Solids 480(6)
Crack Closure 486(7)
Short Crack Problem 493(3)
Fatigue Growth Laws and Fatigue Life 496(3)
Prediction
Fatigue of Composites 499(5)
Summary 504(7)
Bibliography 505(6)
Introduction to Viscoelasticity, Creep, and 511(62)
Creep Crack Growth
Introduction 511(2)
Creep and Viscoelasticity in Polymers 513(7)
Mechanical Dumping 520(3)
Temperature Dependence of Time-Dependent 523(2)
Flow in Polymers
Introduction to Creep in Metallic and 525(3)
Ceramic Materials
Functional Forms in the Different Creep 528(3)
Regimes
Secondary Creep Deformation and Diffusion 531(2)
Mechanisms of Creep Deformation 533(9)
Creep Life Prediction 542(2)
Creep Design Approaches 544(2)
Threshold Stress Effects 546(1)
Creep in Composite Materials 547(1)
Thermostructural Materials 548(8)
Introduction to Superplasticity 556(6)
Introduction to Creep Damage and 562(5)
Time-Dependent Fracture Mechanics
Summary 567(6)
Bibliography 568(5)
Index 573