Mathematics : A Practical Odyssey (6TH)

Mathematics : A Practical Odyssey (6TH)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 886 p.
  • 言語 ENG,ENG
  • 商品コード 9780495110743
  • DDC分類 511

Table of Contents

    Chapter 1 Logic                                1  (61)
1.1 Deductive versus Inductive Reasoning 2 (17)
1.2 Symbolic Logic 19 (8)
1.3 Truth Tables 27 (13)
1.4 More on Conditionals 40 (6)
1.5 Analyzing Arguments 46 (16)
Chapter 2 Sets And Counting 62 (63)
2.1 Sets and Set Operations 63 (12)
2.2 Applications of Venn Diagrams 75 (13)
2.3 Introduction to Combinatorics 88 (8)
2.4 Permutations and Combinations 96 (16)
2.5 Infinite Sets 112(13)
Chapter 3 Probability 125(94)
3.1 History of Probability 126(7)
3.2 Basic Terms of Probability 133(19)
3.3 Basic Rules of Probability 152(12)
3.4 Combinatorics and Probability 164(11)
3.5 Expected Value 175(11)
3.6 Conditional Probability 186(16)
3.7 Independence; Trees in Genetics 202(17)
Chapter 4 Statistics 219(108)
4.1 Population, Sample, and Data 220(25)
4.2 Measures of Central Tendency 245(13)
4.3 Measures of Dispersion 258(17)
4.4 The Normal Distribution 275(18)
4.5 Polls and Margin of Error 293(14)
4.6 Linear Regression 307(20)
Chapter 5 Finance 327(82)
5.1 Simple Interest 328(11)
5.2 Compound Interest 339(16)
5.3 Annuities 355(12)
5.4 Amortized Loans 367(20)
5.5 Annual Percentage Rate on a Graphing 387(9)
Calculator
5.6 Payout Annuities 396(13)
Chapter 6 Voting And Apportionment 409(67)
6.1 Voting Systems 410(21)
6.2 Methods of Apportionment 431(29)
6.3 Flaws of Apportionment 460(16)
Chapter 7 Number Systems And Number Theory 476(46)
7.1 Place Systems 477(13)
7.2 Arithmetic in Different Bases 490(9)
7.3 Prime Numbers and Perfect Numbers 499(11)
7.4 Fibonacci Numbers and the Golden Ratio 510(12)
Chapter 8 Geometry 522(125)
8.1 Perimeter and Area 523(15)
8.2 Volume and Surface Area 538(12)
8.3 Egyptian Geometry 550(11)
8.4 The Greeks 561(13)
8.5 Right Triangle Trigonometry 574(15)
8.6 Conic Sections and Analytic Geometry 589(11)
8.7 Non-Euclidean Geometry 600(11)
8.8 Fractal Geometry 611(21)
8.9 The Perimeter and Area of a Fractal 632(15)
Chapter 9 Graph Theory 647(75)
9.1 A Walk Through Konigsberg 648(6)
9.2 Graphs and Euler Trails 654(14)
9.3 Hamilton Circuits 668(14)
9.4 Networks 682(21)
9.5 Scheduling 703(19)
Chapter 10 Exponential And Logarithmic 722(79)
Functions
10.0A Review of Exponentials and 723(11)
Logarithms
10.0B Review of Properties of Logarithms 734(13)
10.1 Exponential Growth 747(16)
10.2 Exponential Decay 763(18)
10.3 Logarithmic Scales 781(20)
Chapter 11 Matrices And Markov Chains 801(54)
11.0 Review of Matrices 802(13)
11.1 Introduction to Markov Chains 815(14)
11.2 Systems of Linear Equations 829(7)
11.3 Long-Range Predictions with Markov 836(5)
Chains
11.4 Solving Larger Systems of Equations 841(6)
11.5 More on Markov Chains 847(8)
Chapter 12 Linear Programming 855
12.0 Review of Linear Inequalities 856(12)
12.1 The Geometry of Linear Programming 868
12.2 Introduction to the Simplex Method 2 (9)
12.3 The Simplex Method: Complete Problems 11
Chapter 13 The Concepts And History Of 1 (1)
Calculus
13.0 Review of Ratios, Parabolas, and 2 (11)
Functions
13.1 The Antecedents of Calculus 13 (14)
13.2 Four Problems 27 (15)
13.3 Newton and Tangent Lines 42 (7)
13.4 Newton on Falling Objects and the 49 (11)
Derivative
13.5 The Trajectory of a Cannonball 60 (14)
13.6 Newton and Areas 74 (9)
13.7 Conclusion 83
APPENDICES
Appendix A Using a Scientific Calculator 1 (9)
Appendix B Using a Graphing Calculator 10 (11)
Appendix C Graphing with a Graphing 21 (5)
Calculator
Appendix D Finding Points of Intersection 26 (2)
with a Graphing Calculator
Appendix E Dimensional Analysis 28 (5)
Appendix F Body Table for the Standard 33 (1)
Normal Distributon
Appendix G Answers 34
Index 1