藤原裕之(編)/ハイブリッド・ペロブスカイト太陽電池<br>Hybrid Perovskite Solar Cells : Characteristics and Operation

個数:1
紙書籍版価格
¥46,509
  • 電子書籍

藤原裕之(編)/ハイブリッド・ペロブスカイト太陽電池
Hybrid Perovskite Solar Cells : Characteristics and Operation

  • 著者名:Fujiwara, Hiroyuki (EDT)
  • 価格 ¥31,422 (本体¥28,566)
  • Wiley-VCH(2021/10/07発売)
  • ポイント 285pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)
  • 言語:ENG
  • ISBN:9783527347292
  • eISBN:9783527825868

ファイル: /

Description

Unparalleled coverage of the most vibrant research field in photovoltaics!

 

Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history.

Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II).

Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding.

This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.

Table of Contents

Preface xv

About the Editor xix

1 Introduction 1
Hiroyuki Fujiwara

1.1 Hybrid Perovskite Solar Cells 1

1.2 Unique Natures of Hybrid Perovskites 4

1.2.1 Notable Characteristics of Hybrid Perovskites 5

1.2.2 Fundamental Properties of MAPbI3 8

1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? 11

1.3 Advantages of Hybrid Perovskite Solar Cells 12

1.3.1 Band Gap Tunability 12

1.3.2 High Voc 13

1.3.3 Low Temperature Coefficient 16

1.4 Challenges for Hybrid Perovskites 16

1.4.1 Requirement of Improved Stability 17

1.4.2 Large-Area Solar Cells 19

1.4.3 Toxicity of Pb and Sn Compounds 20

1.5 Overview of this Book 22

Acknowledgment 23

References 23

2 Overview of Hybrid Perovskite Solar Cells 29
Tsutomu Miyasaka and Ajay K. Jena

2.1 Introduction 29

2.2 Historical Backgrounds of Halide Perovskite Photovoltaics 32

2.3 Semiconductor Properties of Organo Lead Halide Perovskites 34

2.4 Working Principle of Perovskite Photovoltaics 37

2.5 Compositional Design of the Halide Perovskite Absorbers 40

2.6 Strategy for Stabilizing Perovskite Solar Cells 41

2.7 All Inorganic and Lead-Free Perovskites 48

2.8 Development of High-Efficiency Tandem Solar Cells 52

2.9 Conclusion and Perspectives 54

References 55

Part I Characteristics of Hybrid Perovskites 65

3 Crystal Structures 67
Mitsutoshi Nishiwaki, Tatsuya Narikuri, and Hiroyuki Fujiwara

3.1 What Is Hybrid Perovskite? 67

3.2 Structures of Hybrid Perovskite Crystals 68

3.2.1 Crystal Structure of MAPbI3 68

3.2.2 Lattice Parameters of Hybrid Perovskites 71

3.2.3 Secondary Phase Materials 75

3.3 Tolerance Factor 77

3.3.1 Tolerance Factor of Hybrid Perovskites 79

3.3.2 Tolerance Factor of Mixed-Cation Perovskites 82

3.4 Phase Change by Temperature 84

3.5 Refined Structures of Hybrid Perovskites 86

3.5.1 Orientation of Center Cations 86

3.5.2 Relaxation of Center Cations 88

Acknowledgment 89

References 89

4 Optical Properties 91
Hiroyuki Fujiwara, Yukinori Nishigaki, Akio Matsushita, and Taisuke Matsui

4.1 Introduction 91

4.2 Light Absorption in MAPbI3 93

4.2.1 Visible/UV Region 96

4.2.2 IR Region 98

4.2.3 THz Region 99

4.3 Band Gap of Hybrid Perovskites 101

4.3.1 Band Gap Analysis of MAPbI3 101

4.3.2 Band Gap of Basic Perovskites 103

4.3.3 Band Gap Variation in Perovskite Alloys 105

4.4 True Absorption Coefficient of MAPbI3 106

4.4.1 Principles of Optical Measurements 107

4.4.2 Interpretation of α Variation 108

4.5 Universal Rules for Hybrid Perovskite Optical Properties 111

4.5.1 Variation with Center Cation 111

4.5.2 Variation with Halide Anion 112

4.6 Subgap Absorption Characteristics 114

4.7 Temperature Effect on Absorption Properties 116

4.8 Excitonic Properties of Hybrid Perovskites 117

References 119

5 Physical Properties Determined by Density Functional Theory 123
Hiroyuki Fujiwara, Mitsutoshi Nishiwaki, and Yukinori Nishigaki

5.1 Introduction 123

5.2 What Is DFT? 124

5.2.1 Basic Principles 124

5.2.2 Assumptions and Limitations 126

5.3 Crystal Structures Determined by DFT 128

5.3.1 Hybrid Perovskite Structures 128

5.3.2 Organic-Center Cations 131

5.4 Band Structures 132

5.4.1 Band Structures of Hybrid Perovskites 132

5.4.2 Direct–Indirect Issue of Hybrid Perovskite 134

5.4.3 Density of States 139

5.4.4 Effective Mass 140

5.5 Band Gap 141

5.5.1 What Determines Band Gap? 142

5.5.2 Effect of Center Cation 143

5.5.3 Effect of Halide Anion 143

5.6 Defect Physics 144

Acknowledgment 147

References 147

6 Carrier Transport Properties 151
Hiroyuki Fujiwara and Yoshitsune Kato

6.1 Introduction 151

6.2 Carrier Properties of Hybrid Perovskites 153

6.2.1 Self-Doping in Hybrid Perovskites 153

6.2.2 Effect of Carrier Concentration on Mobility 155

6.3 Carrier Mobility of MAPbI3 155

6.3.1 Variation of Mobility with Characterization Method 156

6.3.2 Temperature Dependence 159

6.3.3 Effect of Effective Mass 160

6.3.4 What Determines Maximum Mobility of MAPbI3? 161

6.4 Diffusion Length 164

6.5 Carrier Transport in Various Hybrid Perovskites 166

References 168

7 Ferroelectric Properties 173
Tobias Leonhard, Holger Röhm, Alexander D. Schulz, and Alexander Colsmann

7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells 173

7.2 Ferroelectricity 174

7.2.1 Crystallographic Considerations 174

7.2.2 Ferroelectricity in Thin Films 178

7.2.3 Crystallography of MAPbI3 Thin Films 178

7.3 Probing Ferroelectricity on the Microscale 179

7.3.1 Atomic Force Microscopy 179

7.3.2 Piezoresponse Force Microscopy 180

7.3.3 Characterization of MAPbI3 Thin Films with sf-PFM 183

7.3.4 Correlative Domain Characterization 188

7.3.4.1 Transmission Electron Microscopy 188

7.3.4.2 X-ray Diffraction 189

7.3.4.3 Electron Backscatter Diffraction 189

7.3.4.4 Kelvin Probe Force Microscopy 191

7.3.5 Polarization Orientation 191

7.3.6 Ferroelastic Effects in MAPbI3 Thin Films 193

7.4 Ferroelectric Poling of MAPbI3 195

7.4.1 AC Poling of MAPbI3 196

7.4.2 Creeping Poling and Switching Events on the Microscopic Scale 197

7.4.3 Macroscopic Effects of Poling 200

7.5 Impact of Ferroelectricity on the Performance of Solar Cells 201

7.5.1 Pitfalls During Sample Measurements 201

7.5.2 Charge Carrier Dynamics in Solar Cells 203

References 203

8 Photoluminescence Properties 207
Yasuhiro Yamada and Yoshihiko Kanemitsu

8.1 Introduction 207

8.2 Overview of Luminescent Properties 208

8.3 Room-Temperature PL Spectra of a Hybrid Perovskite Thin Film 209

8.4 Time-Resolved PL of a Hybrid Perovskite 213

8.5 PL Quantum Efficiency 218

8.6 Temperature-Dependent PL 220

8.7 Material and Device Characterization by PL Spectroscopy 222

8.7.1 Degradation and Healing of Hybrid Perovskites 222

8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell 223

8.8 Conclusion 224

Acknowledgment 225

References 225

9 Role of Grain Boundaries 229
Jae Sung Yun

9.1 Introduction 229

9.2 Role of Grain Boundaries in Device Performance 230

9.2.1 Potential Barrier at GBs and Charge Transport 231

9.2.2 Engineering of GB Properties 234

9.3 Ion Migration Through Grain Boundaries 241

9.3.1 Enhanced Ion Transport at Grain Boundaries 241

9.3.2 Role of GBs for Ion Migration 244

9.4 Role of Grain Boundaries in Stability 246

9.4.1 MAPbI3 Hydrated Phase at GBs 247

9.4.2 Formation of Non-perovskite Phase at GBs of FAPbI3 248

References 250

10 Roles of Center Cations 253
Biwas Subedi, Juan Zuo, Marie Solange Tumusange, Maxwell M. Junda, Kiran Ghimire, and Nikolas J. Podraza

10.1 Introduction 253

10.2 Cubic Perovskite Phase Tolerance Factor 256

10.3 Thin Film Stability 258

10.4 Optoelectronic Property Variations 263

10.5 Solar Cell Performance 268

References 271

Part II Hybrid Perovskite Solar Cells 275

11 Operational Principles of Hybrid Perovskite Solar Cells 277
Hiroyuki Fujiwara, Yoshitsune Kato, Yuji Kadoya, Yukinori Nishigaki, Tomoya Kobayashi, Akio Matsushita, and Taisuke Matsui

11.1 Introduction 277

11.2 Operation of Hybrid Perovskite Solar Cells 278

11.2.1 Operational Principle and Basic Structures 278

11.2.2 Band Alignment 281

11.3 Band Diagram of Hybrid Perovskite Solar Cells 283

11.3.1 Device Simulation 283

11.3.2 Experimental Observation 285

11.4 Refined Analyses of Hybrid Perovskite Solar Cells 287

11.4.1 Carrier Generation and Loss 287

11.4.2 Power Loss Mechanism 291

11.4.3 e-ARC Software 295

11.5 What Determines Voc? 295

11.5.1 Effect of Interface 297

11.5.2 Effect of Passivation 300

11.5.3 Effect of Grain Boundary 303

References 305

12 Efficiency Limits of Single and Tandem Solar Cells 309
Hiroyuki Fujiwara, Yoshitsune Kato, Masayuki Kozawa, Akira Terakawa, and Taisuke Matsui

12.1 Introduction 309

12.2 What Is the SQ Limit? 310

12.2.1 Physical Model 311

12.2.2 Blackbody Radiation 313

12.2.3 SQ Limit 315

12.3 Maximum Efficiencies of Perovskite Single Cells 319

12.3.1 Concept of Thin-Film Limit 319

12.3.2 EQE Calculation Method 321

12.3.3 Maximum Efficiencies of Single Solar Cells 323

12.3.4 Performance-Limiting Factors of Hybrid Perovskite Devices 325

12.4 Maximum Efficiency of Tandem Cells 327

12.4.1 Optical Model and Assumptions 328

12.4.2 Calculation of Tandem-Cell EQE Spectra 329

12.4.3 Maximum Efficiencies of Tandem Devices 331

12.4.4 Realistic Maximum Efficiency of Tandem Cell 334

12.5 Free Software for Efficiency Limit Calculation 335

References 336

13 Multi-cation Hybrid Perovskite Solar Cells 339
Jacob N. Vagott and Juan-Pablo Correa-Baena

13.1 Introduction 339

13.2 Types of A-Site Multi-cation Hybrid Perovskite Solar Cells 341

13.2.1 Pb-Based Multi-cation Hybrid Perovskite Solar Cells 341

13.2.2 Sn-Based Multi-cation Hybrid Perovskite Solar Cells 344

13.3 Cation Selection in Mixed-Cation Hybrid Perovskite Solar Cells 345

13.3.1 Organic A-Cations 345

13.3.2 Inorganic A-Cations 347

13.4 Fabrication of Mixed-Cation Hybrid Perovskite Solar Cells 349

13.4.1 Traditional Fabrication Approach 349

13.4.2 Emerging Fabrication Technologies 350

13.5 Charge Transport Materials 353

13.6 Surface Passivation 357

13.7 Mixed B-Cation Hybrid Organic–Inorganic Perovskite Solar Cells 361

13.8 Basic Characterization of Mixed-Cation Hybrid Perovskite Solar Cells 362

References 365

14 Tin Halide Perovskite Solar Cells 373
Gaurav Kapil and Shuzi Hayase

14.1 Introduction 373

14.1.1 Device Structure and Operating Principle 374

14.1.2 Crystal Structure 375

14.2 Tin Perovskite Solar Cells 376

14.2.1 Intrinsic Properties 377

14.2.2 Carrier Lifetime and Diffusion Length 378

14.3 The Status of Sn Perovskite Solar Cells 379

14.3.1 Different Type of Sn Perovskite Solar Cells 380

14.3.1.1 CsSnI3 380

14.3.1.2 MASnI3 383

14.3.1.3 FASnI3 384

14.3.1.4 FAxMA1-xSnI3 385

14.3.1.5 2D/3D FASnI3 387

14.3.1.6 Sn–Ge mixed PSCs 387

14.3.2 Strategies to Improve the Efficiency 389

14.3.2.1 Film Fabrication Methods 389

14.3.2.2 Use of Reducing Agents 389

14.3.2.3 Doping Effect of Large Organic Cations 390

14.3.2.4 Device Engineering and Lattice Relaxation 391

14.4 Sn–Pb Perovskite Solar Cells 393

14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) 396

14.4.2 Physical Properties 398

14.4.2.1 Intrinsic Carrier Concentration 398

14.4.2.2 Carrier Lifetime and Diffusion Length 399

14.5 The Status of Sn–Pb Perovskite Solar Cells 399

14.5.1 Different Types of Sn–Pb Perovskite Solar Cells 401

14.5.1.1 First Kind of Sn–Pb PSC absorber: MASnxPb1-xI3 401

14.5.1.2 Multi Cation Sn–Pb Perovskites: (FA, MA, Cs) (Sn, Pb)

(I, Br, Cl)3 401

14.5.2 Strategies to Improve the Efficiency 403

14.5.2.1 Use of Additives 403

14.5.2.2 Device Engineering 404

14.6 Conclusion and Outlook 406

References 406

15 Stability of Hybrid Perovskite Solar Cells 411
Seigo Ito

15.1 Introduction: Trigger of the Degradation 411

15.2 Crystal Quality for Stable Perovskite Solar Cells 413

15.3 Water-Stable and MA-Free Perovskites 415

15.4 Defects and Grain-Surface Ion Migration, and Passivation (Including 2-D Crystal) 417

15.5 Degradation at Interface with Metal Oxides 420

15.6 Porous Carbon Electrode to Be Very Stable Multiporous-Layered- Electrode Perovskite Solar Cells (MPLE-PSC) 420

15.7 Damp Heat Tests 421

15.8 Conclusion 422

References 425

16 Hysteresis in J–V Characteristics 429
Wolfgang Tress

16.1 Introduction and Definitions: What Do We Mean by Hysteresis? 429

16.2 The JV Curve of a Solar Cell: What Does It Tell? 431

16.3 Characteristics of Hysteresis: What Does It Depend on? 437

16.4 Mechanistic and Microscopic Origin of Hysteresis: What Changes Slowly? 442

16.5 Issues with Hysteresis: How to Tune/Avoid/Suppress? 453

16.6 Conclusion and Open Questions 453

References 454

17 Perovskite-Based Tandem Solar Cells 463
Klaus Jäger and Steve Albrecht

17.1 Introduction 463

17.2 Architectures of Tandem Solar Cells 465

17.2.1 Monolithic Two-Terminal Solar Cells 466

17.2.2 Four-Terminal Tandem Solar Cells 467

17.2.3 Other Concepts 468

17.2.4 Bifacial Solar Cells 469

17.3 Efficiency Limits of Multi-Junction Solar Cells 469

17.3.1 Efficiency Limit for Four-Terminal Tandem Solar Cells 470

17.3.2 Efficiency Limit for Two-Terminal Tandem Solar Cells 472

17.3.3 Efficiency Limit for Cells with More Junctions 474

17.4 Perovskites as Tandem Solar Cell Materials 474

17.5 Experimental Results on Perovskite-Based Tandem Solar Cells 477

17.5.1 Perovskite/Silicon Tandem Solar Cells 482

17.5.2 Perovskite-Chalcogenide Tandem Solar Cells 489

17.6 Energy Yield Calculations 493

17.6.1 Illumination Model 494

17.6.2 Optical Model 494

17.6.3 Electrical Model 496

17.6.4 Temperature Model 498

17.6.5 Energy Yield Calculation 498

17.7 Conclusions and Outlook 499

Acknowledgments 500

References 500

18 All Perovskite Tandem Solar Cells 509
Zhaoning Song and Yanfa Yan

18.1 Introduction 509

18.2 Working Principles of Tandem Solar Cells 511

18.2.1 Why to Use Tandem Solar Cells 511

18.2.2 Tandem Device Architectures 513

18.2.3 PCE of Tandem Solar Cells 514

18.3 Wide-Bandgap Perovskite Solar Cells 516

18.3.1 Wide-Bandgap Mixed I-Br Perovskites 516

18.3.2 Current State of Wide-Bandgap Perovskite Solar Cells 518

18.3.3 Critical Issues of Wide-Bandgap Perovskite Cells 519

18.4 Low-Bandgap Perovskite Solar Cells 520

18.4.1 Low-Bandgap Mixed Sn-Pb Perovskites 520

18.4.2 Current State of Low-Bandgap Perovskite Solar Cells 524

18.4.3 Critical Issues of Low-Bandgap Perovskite Cells 525

18.5 All-Perovskite Tandem Solar Cells 527

18.5.1 4-T All-Perovskite Tandem Solar Cells 527

18.5.2 2-T All-Perovskite Tandem Solar Cells 528

18.5.3 Limitations and Challenges of All-Perovskite Tandem Solar Cells 533

18.6 Conclusion and Outlooks 534

Acknowledgments 535

References 535

A Optical Constants of Hybrid Perovskite Materials 541
Yukinori Nishigaki, Akio Matsushita, Alvaro Tejada, Taisuke Matsui, and Hiroyuki Fujiwara

References 562

B Numerical Values of Shockley–Queisser Limit 563
Yoshitsune Kato and Hiroyuki Fujiwara

Index 567