酸化還元活性療法<br>Redox-Active Therapeutics〈1st ed. 2016〉

個数:1
紙書籍版価格
¥41,837
  • 電子書籍

酸化還元活性療法
Redox-Active Therapeutics〈1st ed. 2016〉

  • 言語:ENG
  • ISBN:9783319307039
  • eISBN:9783319307053

ファイル: /

Description

This essentialvolume comprehensively discusses redox-active therapeutics, focusingparticularly on their molecular design, mechanistic, pharmacological andmedicinal aspects.  The first section of the book describes the basicaspects of the chemistry and biology of redox-active drugs and includes a briefoverview of the redox-based pathways involved in cancer and the medical aspectsof redox-active drugs, assuming little in the way of prior knowledge.Subsequent sections and chapters describe more specialized aspects of central nervous system injuries, neurodegenerativediseases, pain, radiation injury and radioprotection (such as of brain, lungs, headand neck and erectile function) and neglected diseases (e.g., leishmaniasis).It encompasses several major classes of redox-active experimental therapeutics, whichinclude porphyrins, salens, nitrones, and most notably metal-containing (e.g.,Mn, Fe, Cu, Zn, Sb) drugs as either single compounds or formulations withnanomaterials and quantum dots. Numerous illustrations, tablesand figures enhance and complement the text; extensive references to relevantliterature are also included.

 

Redox-Active Therapeutics is an invaluable addition to Springer’s OxidativeStress in Applied Basic Research and Clinical Practice  series. It is essential reading for researchers, clinicians and graduate studentsinterested in understanding and exploring the Redoxome—the organism redoxnetwork—as an emerging frontier in drug design, redox biology and medicine.

Table of Contents

Part1. Pathophysiological Roles of Superoxide Dismutases (SOD).- Superoxide and theSuperoxide Dismutases: An Introduction by Irwin Fridovich.- The Discovery ofSuperoxide Dismutase and Its Role in Redox Biology.- Manganese SuperoxideDismutase (MnSOD) and It's Importance in Mitochondrial Function and Cancer.- Regulationof the Cellular Redox Environment by Superoxide Dismutases, Catalase and GlutathionePeroxidases During Tumor Metastasis.- Superoxide Dismutase Family of Enzymes inBrain Neurogenesis and Radioprotection.- Metabolic Production of H2O2in Carcinogenesis and Cancer Treatment.- Part 2. Redox-Active Therapeutics –Design and Mechanisms of Action.- Mimicking SOD, Why and How: Bio-InspiredManganese Complexes as SOD Mimics.- Mn Porphyrin-Based Redox-ActiveTherapeutics.- Cytochrome P450-like Biomimetic Oxidation Catalysts Based on Mnporphyrins as Redox Modulators.- Nitrones as Potent Anticancer Therapeutics.- SalenManganese Complexes Mitigate Radiation Injury in Normal Tissues ThroughModulation of Tissue Environment.- Molecular Basis for Anticancer and AntiparasiteActivities of Copper-Based Drugs.- Small Signaling Molecules and CO-ReleasingMolecules (CORMs) for the Modulation of the Cellular Redox Metabolism.- HNO/ThiolBiology as a Therapeutic Target.- Part 3. Redox-Active Therapeutics in Cancer.-Advances in Breast Cancer Therapy Using Nitric Oxide and Nitroxyl Donor Agents.-Mechanisms by Which Manganese Porphyrins Affect Signaling in Cancer Cells.- TargetedTherapy for Malignant Brain Tumors.- Redox Therapeutics in Breast Cancer: Role ofSOD Mimics.- Anticancer Action of Mn porphyrins in Head and Neck Cancers.- Redox-basedTherapeutic Strategies in the Treatment of Skin Cancers.- Role of Oxidative Stressin Erectile Dysfunction after Prostate Cancer Therapy.- Theranostic Nanoconjugatesof Tetrapyrrolic Macrocycles and Their Applications in Photodynamic Therapy.-Part 4. Redox-Active Therapeutics in Other Diseases.- QuantumDots inPhotodynamic Therapy.- Metalloporphyrins in CNS injuries.- The Contribution of NitroxidativeStress to Pathophysiological Pain and Opioid Analgesic Failure.- AmyotrophicLateral Sclerosis – Present Understanding of the Role of SOD.- Redox Regulationand Misfolding of SOD1: Therapeutic Strategies for Amyotrophic LateralSclerosis.- Redox-Based Therapeutics for Prevention, Mitigation,and Treatment of Lung Injury Secondary to Radiation Exposure.- Using Metalloporphyrinsto Preserve β Cell Mass and Inhibit Immune Responses in Diabetes.-Redox-Active Metal Complexes in Trypanosomatids.