調和解析と偏微分方程式<br>Harmonic Analysis, Partial Differential Equations and Applications〈1st ed. 2017〉 : In Honor of Richard L. Wheeden

個数:1
紙書籍版価格 ¥14,610
  • Kinoppy
  • ポイントキャンペーン

調和解析と偏微分方程式
Harmonic Analysis, Partial Differential Equations and Applications〈1st ed. 2017〉 : In Honor of Richard L. Wheeden


ファイル: /

Description

This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.

Table of Contents

Preface

1. Luis Caffarelli ( Univ. of Texas)
caffarel@math.utexas.edu


2. Sagun Chanillo (Rutgers Univ.)
chanillo@math.rutgers.edu

3. Seng-Kee Chua ( National Univ. of Singapore)
matcsk@nus.edu.sg


4. Bruno Franchi ( Univ. of Bologna)
bruno.franchi@unibo.it


5. Cristian Gutierrez ( Temple Univ. Philadelphia, USA)
cristian.gutierrez@temple.edu

6. Xiaojun Huang ( Rutgers Univ.)
huangx@math.rutgers.edu

7. Carlos Kenig ( Univ. of Chicago)
cek@math.uchicago.edu

8. Ermanno Lanconelli ( Univ. of Bologna)
ermanno.lanconelli@unibo.it


9. Eric Sawyer ( Mcmaster Univ.)
sawyer@mcmaster.ca

10. Raul Serapioni ( Univ. of Trento, Italy)
serapion@science.unitn.it

11. Rodolfo Torres ( Univ. of Kansas, Lawrence, KS)
torres@math.ku.edu

12. Igor Verbitsky ( Univ. of Missouri, Columbia)
verbitskyi@missouri.edu

13. Alexander Volberg ( Michigan State Univ.)
volberg@math.msu.edu

14. Michael Wilson ( Univ. of Vermont)
jmwilson@uvm.edu