計算生物学とゲノム生物情報学<br>Computational Biology and Genome Informatics

個数:

計算生物学とゲノム生物情報学
Computational Biology and Genome Informatics

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 製本 Hardcover:ハードカバー版/ページ数 268 p.
  • 言語 ENG
  • 商品コード 9789812382573
  • DDC分類 570.285

基本説明

Associated with the analysis and management of biological information at the molecular level. It contains chapters on RBA and protein structure analysis, DNA computing, sequence mapping, genome comparison, gene expression data mining, metabolic network modeling, and more.

Full Description


This study contains articles written by experts on a wide range of topics that are associated with the analysis and management of biological information at the molecular level. It contains chapters on RNA and protein structure analysis, DNA computing, sequence mapping, genome comparison, gene expression data mining, metabolic network modelling, and phyloinformatics. The important work of some representative researchers in bioinformatics is brought together. The topic is treated in depth and is related to, where applicable, other emerging technologies such as data mining and visualization. The goal of the work is to introduce readers to the principle techniques of bioinformatics in the hope that they will build on them to make new discoveries of their own.

Contents

Exploring RNA Intermediate Conformations with the Massively Parallel Genetic Algorithm (B A Shapiro et al.); Introduction to Self-Assembling DNA Nanostructures for Computation and Nanofabrication (T H LaBean); Mapping Sequence to Rice FPC (C Soderlund et al.); Graph Theoretic Sequence Clustering Algorithms and Their Applications to Genome Comparison (S Kim); The Protein Information Resource for Functional Genomics and Proteomics (C H Wu); High-Grade Ore for Data Mining in 3d Structures (J S Richardson & D C Richardson); Protein Classification: A Geometric Hashing Approach (X Wang & J T L Wang); Interrelated Clustering: An Approach for Gene Expression Data Analysis (C Tang et al.); Creating Metabolic Network Models Using Text Mining and Expert Knowledge (J A Dickerson et al.); Phyloinformatics and Tree Networks (W H Piel).